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A B S T R A C T

With the unprecedented availability of satellite data and the rise of global binary maps, the collection of shared
reference data sets should be fostered to allow systematic product benchmarking and validation. Authoritative global
reference data are generally collected by experts with regional knowledge through photo-interpretation. During the last
decade, crowdsourcing has emerged as an attractive alternative for rapid and relatively cheap data collection, beck-
oning the increasingly relevant question: can these two data sources be combined to validate thematic maps? In this
article, we compared expert and crowd data and assessed their relative agreement for cropland identification, a land
cover class often reported as difficult to map. Results indicate that observations from experts and volunteers could be
partially conflated provided that several consistency checks are performed. We propose that conflation, i.e., replace-
ment and augmentation of expert observations by crowdsourced observations, should be carried out both at the
sampling and data analytics levels. The latter allows to evaluate the reliability of crowdsourced observations and to
decide whether they should be conflated or discarded. We demonstrate that the standard deviation of crowdsourced
contributions is a simple yet robust indicator of reliability which can effectively inform conflation. Following this
criterion, we found that 70% of the expert observations could be crowdsourced with little to no effect on accuracy
estimates, allowing a strategic reallocation of the spared expert effort to increase the reliability of the remaining 30% at
no additional cost. Finally, we provide a collection of evidence-based recommendations for future hybrid reference data
collection campaigns.
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1. Introduction

With the increasing availability of remotely-sensed imagery ac-
quired by satellites such as PROBA-V, Landsat-8, and Sentinel-1, -2 and
-3, the number of available land cover maps will undoubtedly increase.
In fact, such a trend is already visible for global binary thematic pro-
ducts, e.g., Yu et al. (2013); Pesaresi et al. (2013); European
Environment Agency (2015); Pekel et al. (2016); Lamarche et al.
(2017). This development should foster the collection and sharing of
reference databases by the user community to systematically assess and
benchmark existing and future products, especially given the continued
uncertainty in land cover products (Fritz et al., 2011). While some re-
ference data sets can be sourced from the Global Observation of Forest
and Land Cover Dynamics platform (GOFC-GOLD, 2015), they have
several shortcomings for binary validation, mainly due to their small
sample sizes. Moreover, it has been observed that map accuracy esti-
mates can vary significantly depending upon the reference data set
used, owing to differences in the sampling scheme and sampling density
as well as to differences in the legend definition (Waldner et al., 2015).
For instance, the accuracy estimates of cropland extent in global land
cover maps range from 56% to 76% (Fritz et al., 2011).

The development of appropriate global reference data sets is a
challenging task because of the lack of availability of in situ data over
large areas and the cost associated with such collection efforts (Bastin
et al., 2013). For these reasons, authoritative global reference data are,
in the best case, collected by remote sensing experts with a strong
knowledge and understanding of specific ecosystems via photo-inter-
pretation of high spatial resolution imagery (e.g., Mayaux et al., 2006;
Defourny et al., 2012; Bontemps et al., 2013).

In recent years, the rise of new technologies and the free and open
availability of very high resolution imagery such as Google Earth and
Bing Maps have allowed vast amounts of land cover information to be
collected (See et al., 2013). Citizens without professional expertise in
remote sensing or geospatial sciences can become actively engaged in
the creation and analysis of large data sets through what is known as
crowdsourcing (Howe, 2015) or volunteered geographic information
(VGI; Goodchild, 2007). The rise of user-created geospatial content has
been of great benefit to the collection of large quantities of reference
data (Iwao et al., 2006; Schepaschenko et al., 2015) and to improved
product development (Clark and Aide, 2011). Geo-Wiki (Fritz et al.,
2009) is a prime example of a land cover tool that has involved citizens
in the collection of validation data in the past (Comber et al., 2013; See
et al., 2015) while Collect Earth is a more recent alternative (Bey et al.,
2016).

Several approaches to rigorously include crowdsourcing in design-
based statistical inference for area estimation and accuracy assessment
of land cover have been presented in Stehman et al. (2018). They in-
clude: 1) directing volunteers to obtain data at locations selected from a
probability-based sampling scheme, 2) treating crowdsourced data as a
certainty stratum and augmenting the crowdsourced data with re-
ference data obtained from probability-based sampling, and 3) using
crowdsourcing to create an auxiliary variable that is then used in a
model-assisted estimator to reduce the standard error of an estimate
produced from a probability-based sample.

Map accuracy assessment and area estimation are particularly sen-
sitive to errors in the reference labels as many low-paid interpreters or
volunteers are prone to giving noisy answers, thereby violating the
basic assumption of error-free validation data. Errors that occur during
data collection propagate through to the validation process (Woodcock
and Gopal, 2000; Foody, 2011, 2013). Therefore the fundamental
question is: how can we synergistically combine expert and crowd data
to leverage the potential of crowdsourcing while maintaining the
quality standards of accuracy assessment? Depending on the level of
agreement between expert and crowd data, we foresee three possible
outcomes:

1. Exclusion: differences between the crowdsourced and expert data
are too large and the former must be discarded.

2. Partial conflation: the agreement between the two approaches is
discontinuous, i.e., they strongly correlate in certain cases and
weakly in others. Conflation can be applied where correlation is
expected to be high. Therefore, conflation requires an understanding
of where the errors are likely to occur.

3. Replacement: the crowd and the experts strongly agree so that
observations from the two groups are interchangeable, i.e., experts
and volunteers have a level of agreement similar to that of experts
among themselves.

The objectives of this paper are two-fold. First, we seek to quantify
the agreement between expert and crowd observations and determine
the conflation outcome (exclusion, conflation, or replacement) ac-
cordingly. Secondly, we evaluate different variables that could serve as
a proxy for crowd reliability that could therefore inform a conflation
strategy. We illustrate the performance of informed and random con-
flation by validating two global cropland maps, as cropland is a land
cover class that suffers from high uncertainty in global cropland maps
(Fritz et al., 2011; Waldner et al., 2015). To meet these goals, we also
introduce a probability-based sampling design based on systematic
sampling that employs denser sampling in regions with higher un-
certainty. Each sampling unit was interpreted by the two groups of
interpreters (i.e., experts and the crowd) using specific data collection
tools. It is important to clarify here that our purpose is not to assess the
respective interpretation capability of each groups. Rather we evaluate
if they can be combined by acknowledging their intrinsic differences.
We conclude this paper by proposing a set of guidelines for future hy-
brid (crowdsourced and expert-based) reference data collection.

2. Material and methods

2.1. Sampling scheme

2.1.1. Sampling design
The Committee on Earth Observing Satellites-Land Product

Validation (CEOS-LPV) report for global land cover map validation
(Strahler et al., 2006) has defined the recommended common standards
for accuracy assessment but it is not explicit with regards to the im-
plementation. A common sampling approach is stratified random
sampling (e.g., Arino et al., 2008; Bicheron et al., 2008; Bontemps et al.,
2011; Clark and Aide, 2011). In an effort to improve the cost-efficiency
of large-area land cover validation, Olofsson et al. (2012) and Stehman
et al. (2012) introduced the fundamental design and estimation prin-
ciples underlying stratified random sampling to enable a coordinated,
comparable and regularly updated global land-cover validation data-
base.

In this paper we opted for a stratified systematic sampling scheme
with a common pattern of replicates. Stratified systematic sampling also
provides unbiased estimators of accuracy and has other advantages
over random sampling (Wolter, 1984; Gallego et al., 2016). For in-
stance, it is more efficient than random sampling in terms of variance
when the spatial correlation of the variable of interest decreases with
distance (Bellhouse, 2014), which is generally valid for land cover data
derived by remote sensing (Dunn and Harrison, 1993). However, stra-
tified systematic sampling is achieved at the cost of a more complex
implementation. It is often criticised for its lack of flexibility when the
sample size needs to be modified (Stehman, 2009) and for the loss of
spatial homogeneity of the sample distribution –which is the basis of its
good performance–when strata are small and scattered. There is also no
unbiased estimator of the variance as the usual estimator may strongly
overestimate it. Some alternatives have been proposed to reduce
overestimation, e.g., on the basis of local variance (Gallego and Delincé,
2010; Wolter, 1984).

We sought to overcome the rigidity of stratified systematic sampling
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by relying on a pattern of common replicates. The generation of the
sample is a three-step process that 1) creates a systematic grid of re-
plicates, 2) adjusts the number of sampling units by latitude for geo-
graphic coordinates, that do not preserve area, and 3) stratifies the area
of interest to intensify samples in specific strata, e.g., in error-prone
strata. We describe the mechanics of the sampling in the next para-
graphs.

2.1.1.1. Building a pattern of replicates. Let us start by defining a grid
covering an area of interest. In practice, this grid can have any regular
shape but for simplicity let us consider a regular square grid. We then
select the location of the first replicate randomly (Fig. 1a). A replicate is a
set of points that occupy the same position within each grid cell. The
location of a second replicate is then defined as to maximise the
minimum distance to all points of the first replicate regardless of the
grid cell to which they belong (maximin criterion). For instance, the
location of generic replicate R in Fig. 1b does not satisfy the maximin
criterion because distance d (the smallest distance to a point of the first
replicate; the bold arrow in the figure) can be increased without
reducing the distances from all other points to the first replicate
below d. As the sampling grid is square, there is only one location
that satisfies the maximin distance criterion (Fig. 1c). Together
replicates 1 and 2 constitute a new systematic pattern following
diagonal lines. If the sampling needs to be intensified, additional
replicates can be selected. Each additional replicate would be selected
so as to maximise the minimum distance to all previously selected
replicates. This prevents sampling units that are too close to be selected.

It may happen that the chosen sample size is not a multiple of a
number of replicates. For instance, we may wish to select 500 points
from a pattern of replicates that generates 400 or 800 points using one
or two replicates, respectively. This may be solved by selecting a
random subset of the last replicate, e.g., 25% of the second replicate
(100 points) in the previous example. A practical way to implement this
is to attribute a random number ε with a uniform distribution between
0 and 1 to all points of the last replicate. We can then rank the points by
increasing R+ ε values, where R is the replicate number assigned to
each point. We finally select the points according to this ranking until
the desired sample size is reached.

2.1.1.2. Correction for non-equal-area projections. Systematic sampling
is usually based on an equal-area projection. However most maps are
produced in geographic coordinates which requires further adaptations
because the grid cell area diminishes when moving away from the
equator. While this effect is minor in tropical areas, it becomes
significant in temperate regions. Therefore we propose to downgrade

a fraction of each replicate to account for the variability of the grid cell
area as applied in Bontemps et al. (2011). This can be achieved by
slightly modifying the ranking method introduced previously. Knowing
that a parallel at latitude α has approximately a length of cos(α)
compared to the equator, the points are now ranked according to
(R+ ε)/ cos (α). Therefore, a proportion 1− cos (α) of points belonging
to replicate 1 is downgraded to replicate 2, a proportion
2× (1− cos (α)) is downgraded from replicate 2 to 3, and so on.
This correction ensures a uniform sampling with marginal distortions
owing to the Earth's oblateness.

2.1.1.3. Stratification. Points are assigned the stratum they fall in as
attribute. Using the ranking method, they are then selected on a per
stratum basis according to the sampling rates, i.e., the number of
sampling units to select per stratum. Consider a stratum for which p
sampling units need to be selected. Replicates are generated until the
number of points falling in this stratum surpasses the number of desired
sampling points. The selected points for this stratum consist of 1) all the
replicates belonging to the R−1 replicates, and 2) a random sample of
the last replicate so that the total number of selected points matches the
desired sample size. If sampling units have to be added at at later stage,
they can be selected from the last replicate or from new replicates if
need be.

2.1.1.4. Implementation of the proposed sampling. We defined a regular
square grid with cells of 1° by 1° and generated two replicates. We
applied the non-equal-area correction because the sampling grid was
defined so as to coincide with PROBA-V images in geographic
coordinates (Dierckx et al., 2014). The locations of the replicates
were defined so as to correspond to pixel centroids. We propose to
increase the sampling density in areas that were a priori problematic for
cropland discrimination. Therefore a cropland probability map (Fritz
et al., 2015) was utilised to build strata corresponding to areas with
different misclassification probabilities. The probability map was
constructed by computing the agreement of a series of global
cropland maps. A high cropland probability means that the majority
of these maps agreed on the presence of cropland whereas a null
occurrence probability means that all products converged in the
absence of cropland. A low cropland probability is to be interpreted
as a high disagreement among maps. We generated four strata for
which we defined specific sampling rates assuming that intermediate
occurrence probabilities were most error prone (Table 1; Experts vs.
Crowd). We refer to Fig. S1 for an overview of the spatial distribution of
the sample.

As stratum 1 (0% cropland probability) covered most of the world's

Fig. 1. Generation of a pattern of common replicates: a) a replicate is a set of points that occupy the same position in the grid cells, b) the distance between two
replicates is the minimum distance between all pairs of the replicates, c) together replicates 1 and 2 make a new regular pattern.
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area and was assumed to be easier to map, a very small sample size was
selected (100 sampling units). We selected points from replicate 1 for
strata 2, 3 and 4, and extended the selection to replicate 2 for stratum 3.
This means that points of replicate 1 were always selected unless they
belonged to stratum 1. Points of replicate 2 were selected only if they
fell in stratum 3. Following this procedure, a total of 4147 sampling
units were obtained. Fig. 2 illustrates the resulting sampling for a subset
of the conterminous United States and contrasts it against non-stratified
systematic sampling in geographic coordinates. To assess the agreement
between experts, about 10% of the main sample (n=398) was selected
to be evaluated by another expert following a stratified sampling ap-
proach (Table 1; Experts vs. Experts).

2.1.2. Response designs
Two response designs were defined to better accommodate the in-

trinsic characteristics of the expert and the volunteer groups during
data collection. For the experts, each sampling unit (300m×300m,
corresponding to the size of a PROBA-V pixel) was divided into a block
of polygons following state-of-the-art approaches devised in the
GlobCover and ESA Land Cover Climate Change Initiative validation
exercises, whereas blocks of 25 sub-pixels were preferred for the crowd
(Fig. 3). We detail both response designs hereunder and describe the
rationale for defining different response designs.

The experts that participated in the reference data collection have
strong skills in satellite image and time series analysis as well as in land

use land cover mapping. Most of them have also some fieldwork ex-
perience. They were allocated a set of sampling units to label according
to their regional familiarity and agreed to carry out the task until
completion. The expert response design consists of blocks of polygons
that were generated using automated image segmentation (Fig. 3).
Generic segmentation parameters were defined by trial and error so as
to provide visually consistent polygons in the majority of the land-
scapes. Polygons were smoothed and simplified to reduce object com-
plexity and facilitate interpretation. The experts' task was to label each
polygon as cropland, non-cropland, or unknown, and to provide an
overall confidence level (using “certain”, “reasonable” or “doubtful”).
The validation interface displayed the corresponding block of polygons
on very high resolution (VHR) images from two base maps (Google
Maps, Virtual Earth). Pixel-level time series of the Normalised Differ-
ence Vegetation Index (NDVI) were provided to help distinguish crop
from non-crop phenology. Available temporal profiles included weekly
SPOT Vegetation (1 km spatial resolution; mean of 1999–2012) and
PROBA-V time series (300m spatial resolution; smoothed time series
for 2014 and 2015). Sampling units with “unknown” polygons covering
>25% of the sampling unit area were discarded as the class proportion
estimates would be unreliable. Otherwise, they were neglected in the
computation of the cropland proportion.

Volunteers were recruited by reaching out to the Geo-Wiki network
and beyond. They differed from the experts in two main ways: their
level of competency and the duration of their participation were un-
known. This prompted us to define a second response design to better
address these specific differences. We also proposed additional in-
centives to maintain a high level of participation throughout the cam-
paign, e.g., we used gamification and offered prizes or co-authorship to
the best volunteers based on the quality and quantity of their con-
tributions (Laso Bayas et al., 2017).

The crowd response design was simplified to limit the labelling
workload because the polygon-based response design would have un-
dermined the success of gamification. Volunteers were tasked with la-
belling blocks of 5×5 evenly-sized sub-pixels, which was considered
as a good trade-off between the precision of the cropland proportion
estimates and the duration of the interpretation and labelling process
(Fig. 3). They were told to mark sub-pixels as cropland if they contained
>50% cropland using a specific branch within the Geo-Wiki tool.
Different background images were available to aid the visual inter-
pretation such as Google Maps, Bing imagery, and cloud-free Sentinel-2

Table 1
Definition of the strata and their associated sampling rates (at global scale) for
the main Experts vs. Crowd and Experts vs. Experts samples. A sample of 4147
sampling units was collected to assess the consistency between the experts and
the crowd. A subset of 398 sampling units were reinterpreted by a second group
of experts to assess the within-expert variability.

Stratum Occurrence
probability

Sampling rate Number of sampling units in
sample

Experts vs.
crowd

Experts vs.
experts

1 0 Very low 100 18
2 >0–25% Moderate 1160 94
3 25–75% High 1962 192
4 >75% Moderate 925 94
Total 4147 398

Fig. 2. Differences between (a) non-stratified systematic sampling and (b) the proposed stratified systematic sampling with a downgrading of the replicates by
latitude and according to their stratum for most of the conterminous United States. The grid is based on 1° cells. The strata are derived from a cropland probability
layer that defines the likelihood of cropland occurrence based on existing land cover maps.
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images in certain regions. Additionally, different NDVI time series could
be displayed when clicking on a pixel. These were based on Landsat-7
and -8 (32-day composites) and MOD13Q1.005 (16-day composites).
Volunteers were also encouraged to use a feature embedded within the
Geo-Wiki tool to generate a KML file that is then opened automatically
in the Google Earth desktop application to view available historical
imagery. They were not asked to indicate confidence levels and could
skip a sampling unit, indicating if there was no image available/just
low-resolution imagery available/clouds present or if the sampling unit
was too difficult to label. Finally, we encouraged volunteers to share,
via social media, print screens of sampling units that were difficult to
interpret so as to seek advice from their peers or from the Geo-Wiki
team. We summarised the multiple contributions per sampling unit by
taking the median of the reported cropland proportions.

Both groups of photo-interpreters were asked to follow the cropland
definition from the Joint Experiment for Crop Assessment and Monitoring
(JECAM) network: “The annual cropland from a remote sensing perspective is
a piece of land of a minimum 0.25 ha (minimum width of 30m) that is sowed/
planted and harvestable at least once within the 12months after the sowing/
planting date. The annual cropland produces an herbaceous cover and is
sometimes combined with some tree or woody vegetation” (JECAM, 2015;
Waldner et al., 2016). In this definition, perennial crops and fallows are
excluded from the cropland class. The year of interest was 2015.

2.2. Statistical analysis

Even though the prime focus of the paper is on binary maps, we
started by analysing the continuous agreement between the expert and
crowd observations of cropland proportions. First, the agreement be-
tween expert and crowd observations was measured in terms of Mean
Absolute Error (MAE) as per Pontius et al. (2008). Secondly, Lin's
Concordance Correlation Coefficient (CCC; Lin, 1989) can be calculated
as an index of reliability. Ranging from −1 to 1, it evaluates the degree
to which pairs of observations fall on the 1:1 line. Lin's CCC contains a
measure of precision using Pearson's correlation coefficient and a bias
correction for accuracy.

Next, we converted cropland proportions into two classes by setting
the limit between cropland and non-cropland at 50%. We then con-
structed global and stratum-specific error matrices based on Table 1
and then computed accuracy measures such as the Overall Accuracy
(OA), the Producers' Accuracy (PA), and the Users' Accuracy (UA) for
the cropland class as this was the class of interest. For the global ma-
trices, we properly weighted the sample data to account for the area of
each stratum following Olofsson et al. (2014):

=w A
nh

h

h

53
.4
51

53
.4
52

53
.4
53

53
.4
54

22.249 22.250 22.251

Fig. 3. Examples of sampling units located in a) Poland and d) Indonesia with the corresponding expert-based interpretations (b) and e)) and crowdsourced
interpretations (c) and f)). The grey box represents the footprint of a 300-m pixel. Polygons and sub-pixels interpreted as cropland by experts and the crowd,
respectively, are displayed in yellow. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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where wh is the weight of all sampling units belonging to stratum h, nh is
the number of sampling units in that stratum and Ah its area. When
comparing with the crowd, experts were considered as reference. Note
that for consistency between the Experts vs. Crowd and Experts vs.
Experts analyses, the same group of experts was considered as re-
ference.

To uncover patterns of agreement, we calculated the mean absolute
error and the Overall Error (OE=1−OA) for bins of cropland pro-
portions (estimated by the experts and by the crowd) as well as for bins
of the crowd standard deviation. The crowd standard deviation in-
dicates within-volunteer reliability and relates to the variability of all
crowd observations collected for a given sampling unit. The crowd
standard deviation was determined per sampling unit based on all
available cropland proportion estimates provided by the volunteers.

2.3. Evaluation of the conflation strategy

We tested three scenarios for integration of crowd data in the va-
lidation data set (exclusion, partial conflation, and replacement) and
their respective impact on accuracy estimates of two 30-m global
cropland maps: Globeland30 (Chen et al., 2015) and Global Food Se-
curity-Support Analysis Data (GFSAD) (Gumma et al., 2017; Massey
et al., 2017; Oliphant et al., 2017; Phalke et al., 2017; Teluguntla et al.,
2017; Xiong et al., 2017; Zhong et al., 2017). First, a global GFSAD
cropland map was generated from regional/continental maps by taking
the maximum cropland extent where these maps overlapped. Then, the
two global maps were resampled to 300m to match the reference grid
and per-pixel cropland proportions were computed. We then generated
binary cropland/non-cropland maps following a majority rule.

In addition to exclusion and replacement, two partial conflation
strategies were compared with conflation rates ranging from 5% to 95%
by steps of 5%. The conflation rates indicate the percentage of expert
observations that has been replaced by crowdsourced observations. In
the first strategy, referred to as random conflation, we randomly
swapped expert data by crowd data. Random conflation was repeated
50 times to account for chance. In the second strategy, referred to as
informed conflation, we used a proxy to replace expert observations by
crowd observations when they seem reliable. The identification of this
proxy was based on the results of the statistical analysis. Three accuracy
metrics were calculated to assess the impact of conflation on the ac-
curacy estimates: the OA, the PA and the UA of the cropland class.

Finally, we measured the gain of conflation at global and continental
scales by computing the number and proportion of conflated sampling
units, the area-weighted proportion of conflated sampling units as well as
the number of cropland sampling units that were conflated. The weights
of the area-weighted proportions is derived by dividing the area of a
stratum (either globally or by continent) by the number of sampling units
that fall into it as detailed in Olofsson et al. (2014).

3. Results

3.1. Measures of agreement

Every sampling unit was validated by one expert and by at least four
volunteers (maximum=16, median= 5, mean=5.3). Of the 4147
sampling units, 4093 sampling units were left for further analysis after
removing the expert observations with an unknown proportion >25%.
All sampling units from the Experts vs. Experts data set were kept.

The mean absolute error between the experts and the crowd reached
11.8% globally and increased with the cropland probability (2.9% to
16% for stratum 1 and 4, respectively; Table 2). Overall the con-
cordance between the two groups reached 0.79 and was the highest in
stratum 4. This coefficient is not provided for stratum 1 because of the
limited range of cropland proportion observed in this stratum –most
observations agreed on the absence of cropland. Interestingly, the
highest disagreement between the experts and the crowd occurred in
stratum 4, where cropland was most likely to occur and in larger pro-
portions.

The mean absolute errors in the Experts vs. Experts data set were
systematically lower than in the Experts vs. Crowd data set. For in-
stance, it reached 8.2% globally and remained below 12% in all strata
(Table 2). The concordance correlation coefficients were larger than
0.78 in all strata and had the same order of magnitude to those ob-
served for the crowd except in stratum 2.

In the binary case, the overall agreement between the crowd and the
experts was high (Table 3). Globally, the OA and the UA were 0.98 and
0.99, respectively while the PA did not exceed 0.76. Most errors oc-
curred in strata 2 and 3 (0.41 and 0.67 respectively). Nonetheless, the
analysis of the stratum-level accuracy metrics revealed stronger dif-
ferences, e.g., in stratum 4. The agreement measured by the OA spanned
from 86% to 100% while the UA was systematically larger than the PA.
Despite similar overall agreement, experts were systematically char-
acterised by higher PAs.

3.2. Patterns of agreement

Fig. 4 illustrates the evolution of the mean absolute error and the
overall error between the crowd and the experts as a function of the
cropland proportion seen by the experts (a and d), by the crowd (b and
e), and as a function of the crowd standard deviation (c and f). The
mean absolute error increases with the cropland proportion as esti-
mated by the experts from 7% in the absence of cropland to 27% where
cropland is highly dominant. This translates in near error-free crowd
contributions where the cropland proportion is <30%. Most errors
were observed in the range of 50–60%, which is close to the legend cut-
off proportion of 50%. Crowdsourced cropland proportions exhibited
the most errors (>30%) around the cropland class cut-off value both in
the continuous and discrete cases. Finally, the mean absolute error in-
creased with the standard deviation of the crowd, i.e., it is possible to
infer the expected agreement based on the crowd standard deviation.

Error-free observations were more likely to occur when the crowd

Table 2
Agreement metrics when comparing cropland proportions. N: Number of
sampling units; MAE: Mean Absolute Error; Lin's CCC: Lin's Concordance
Correlation Coefficient. Lin's CCC are not provided for stratum 1 due to the
limited range of the cropland proportions observed in this stratum.

Stratum Experts vs. crowd Experts vs. experts

N MAE Lin's CCC N MAE Lin's CCC

1 100 2.9 – 18 0.14 –
2 1160 8.33 0.60 94 3.38 0.82
3 1955 12.36 0.75 192 9.51 0.81
4 878 16.31 0.79 94 11.74 0.78
All 4093 11.83 0.79 398 8.17 0.83

Table 3
Agreement metrics when comparing binary outcomes. N: Number of sampling
units; OA: Overall Accuracy; UA: Users' Accuracy of the cropland class; PA:
Producers' Accuracy of the cropland class.

Stratum Experts vs. crowd Experts vs. experts

N OA UA PA N OA UA PA

1 100 1.00 1.00 – 18 1.00 1.00 –
2 1160 0.93 0.84 0.41 94 0.97 1.00 0.62
3 1955 0.90 0.82 0.67 192 0.89 0.94 0.74
4 878 0.86 0.92 0.80 94 0.88 0.92 0.85
All 4093 0.98 0.99 0.76 398 0.98 0.99 0.81
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standard deviation was <20%. About 10% of error was expected for
crowd standard errors between 20% and 50%. The overall error in-
creased sharply when the crowd standard deviation exceeded 50%.
Therefore, the crowd standard deviation can be used as a simple proxy
for the reliability of the crowd contributions.

3.3. Assessment of the conflation strategies

We validated the resampled GFSAD and Globeland30 (hereafter
referred to as Globeland) maps using the expert data set (Table S1). The
OAs were larger than 0.93 and the UAs of the cropland class were lower
than 0.60. Accuracy strongly varies per stratum which highlights the
relevance of the error-prone stratification approach. Based on the re-
sults presented in Section 3.2, we selected the crowd standard deviation
to inform conflation. We conflated the expert and the crowd data sets
for a range of rates, gradually swapping expert data by crowd data with
increasing standard deviation. Note that 0% and 100% conflation cor-
respond to the exclusion and the replacement scenarios, respectively.
This informed conflation approach was benchmarked against random
conflation. The hybrid data sets were then used to validate the two
cropland maps.

Fig. 5 highlights that informed conflation is a valid approach to
combine expert and crowd observations: it successfully kept the OA
steady, up to a conflation rate of 70% in both cases. A similar trend was
observed for the UA. The conflation strategy remained around the ex-
pert-only estimate until it abruptly decreased at around 70%, whereas
the random conflation led to a steady decrease. In both maps however,
the standard deviation criterion was less effective for the PA as the two

strategies followed the same trajectory until 30% of conflation. From
then on, informed conflation outperformed random conflation.

Fig. 6 shows the evolution of 1) the maximum crowd standard de-
viation and 2) the proportion of cropland sampling units for different
conflation rate increases. Interestingly, only consensus crowd observa-
tions (standard deviation= 0%) were conflated until 50% conflation
was reached. Introducing observations with a standard deviation of
>30% led to sharp differences in accuracy compared to the exclusion
case (conflation rate of 0%). About 30% of the sampling units had been
conflated when the crowd standard deviation became different than
zero.

Assuming a conflation rate of 70% (n= 2861), we computed the
number and proportion of expert effort that could be spared by con-
tinent and by stratum (Table 4). The two continents where conflation
was the most widespread were Asia (n=919) and the Americas
(n= 821). Accounting for the weight of the sampling units in the
sampling scheme, 80% of the area of the four continents could be
conflated. Almost all observations in stratum 1 could be conflated.
Stratum 4 had the highest proportion of cropland sampling units in the
conflation set (155 out of 445), underscoring the relevance of the
stratification. Note that the vast majority of the observations were non-
cropland observations (see also Fig. 6).

4. Discussion

4.1. On the sampling scheme

The sampling approach adopted in this study is an example of active

Fig. 4. Metrics of disagreement between the experts and the crowd. The first row presents the mean absolute error as a function of a) the expert crop proportion, b)
the crowd crop proportion, and c) the standard deviation of the crowd. The second row presents the overall error as a function of d) the expert crop proportion, e) the
crowd crop proportion, and f) the standard deviation of the crowd. Most discrete errors occur around the cut-off proportion between cropland and non-cropland. The
crowd standard deviation is a reliable predictor of the disagreement with the experts.
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crowdsourcing where volunteers are directed to collect data at specific
locations specified by a probability sampling design that allows rig-
orous inference (see Stehman et al., 2018). To that aim, we introduced a
systematic stratified sampling approach with a variable number of re-
plicates. We based the stratification on a probability map of the class of
interest to sample error-prone areas at a higher rate, i.e., where the class
occurrence probability was between 25% and 75%. Results show dif-
ferent error rates per stratum which supports the relevance of the
sampling design. This finding converges with Lamarche et al. (2017)

who reported that denser sampling rates in error-prone areas leads to
more precise map accuracy estimates, which in turns improves map
comparison.

As it is likely that practitioners need to augment the sample size of a
specific region to increase the precision of the accuracy and/or area
estimates, we reduced the rigidity of the systematic sampling by in-
troducing a system based on a pattern of replicates. The proposed
sampling design allows the sample size to be augmented by successively
adding new replicates until the desired number of sampling units is
reached (see Section 2.1.1). For instance, Laso Bayas et al. (2017)
densified the size of the sample tenfold. However, increased flexibility
is achieved at the expense of a slight reduction in the sampling effi-
ciency compared to pure systematic sampling (Gallego et al., 2016).
Note that findings on conflation are not bounded to a specific sampling
design and could be adapted to other designs, e.g., as proposed in
Stehman et al. (2012).

Another important benefit of systematic sampling is the intrinsic
traceability of the sample, which means it could facilitate its uptake as a
shared reference data set. When random samples are used for the va-
lidation of remote sensing products without providing metadata, code,
software versions, and sampling grid, readers or reviewers have no way
of knowing whether difficult points have been eliminated without being
documented. The benefits of traceability are not fully realised as the
current sample used a correction for non-equal-area coordinate systems
that require a random adjustment to the original pattern. In future ef-
forts, traceability could be achieved with equal-area projection systems.
For instance, the validation scheme of GlobCover relied on an equal-
area projection per continent (Bontemps et al., 2011).

The proposed sampling scheme remains valid for validating other
land cover classes but this would require adjustming of the stratification
map accordingly. If the collection of the validation data needs to take
place before the map is produced, it could be obtained following Fritz
et al. (2015) similar to how the cropland probability strata were de-
rived. Otherwise, probability information or classification uncertainty
could be derived from the class memberships provided by the classifier
(e.g., Bogaert et al., 2016), or by using pixel-based accuracy estimates
(e.g., Khatami et al., 2017). The sampling design is also readily ap-
plicable for the validation of land cover changes such as cropland ex-
pansion (Morton et al., 2006), cropland abandonment (Löw et al.,
2018) or urban sprawl (Taubenböck et al., 2009). Addressing land
cover change would also require adjustments to the validation interface
to include VHR images of the epochs of interest. In that regard, Picture
Pile is an interesting example of the use of crowdsourcing for land cover
change analysis (Danylo et al., 2018).

Fig. 5. Evolution of three accuracy metrics (overall accuracy, producers' and
users' accuracy) as a function of the conflation rate. Zero percent and hundred
percent of conflation correspond to the exclusion and the replacement sce-
narios, respectively whereas all the intermediate cases are partial conflation
cases. In one case (green line), the crowd standard deviation was minimised and
in the other (red), observations were randomly swapped. The red dots illustrate
particular random realisations and the red line highlights the trend. (For in-
terpretation of the references to colour in this figure legend, the reader is re-
ferred to the web version of this article.)

Fig. 6. Evolution of the crowd standard deviation and the proportion of crop
observations that were conflated as a function of the conflation rate. When
minimising the crowd standard deviation of the conflated sample, the confla-
tion rate had to exceed 47% for observations that had not reached consensus to
be selected.

Table 4
Number and proportion of the sampling units to be conflated assuming a con-
flation ratio of 70%. These quantities are provided per continent and per
stratum.

Number of
conflated
sampling
units

Proportion of
conflated
sampling units
(%)

Area-weighted
proportion of
conflated
sampling units
(%)

Number of
cropland
sampling units
in the
conflation

Continent
Africa 648 70 88 11
Asia 919 70 86 119
Europe 390 65 80 56
Americas 821 69 84 77
Oceania 83 61 65 14

Stratum
1 91 91 91 0
2 970 84 84 15
3 1355 69 69 107
4 445 51 51 155
Global 2861 70 71 277

F. Waldner et al. Remote Sensing of Environment 221 (2019) 235–246

242



The response designs could also be adjusted to validate maps of
higher spatial resolution, e.g., 30m. An important consideration, how-
ever, is the quality of the very high resolution images to be photo-in-
terpreted. With smaller polygons and sub-pixels to label, it is critical
that the photo-interpreter is provided with sufficiently detailed ima-
gery.

4.2. On the accuracy of photo-interpretation and the need for quality checks

Both the experts and the crowd were subject to errors. Some sources
of error affected both groups equally and others were specific to each
group.

4.2.1. General sources of error
General factors affecting the performance of any photo-interpreter

are primarily demographic, non-cognitive, and cognitive; external and
technical factors impact performance to a lesser extent (Van Coillie
et al., 2014). Additional factors affecting both groups were related to
the experimental set up. They include: 1) out-of-season VHR images for
which accurate discrimination between grassland and cropland is
challenging, 2) noisy NDVI time series, 3) VHR images of poor quality,
e.g., low resolution or cloud cover, and 4) outdated VHR images. We
refer to Lesiv et al. (2018) for a comprehensive analysis of the avail-
ability and topicality of VHR images in Google Earth and Bing Maps.
Further inconsistencies could have occurred because of the diversity of
data sources provided; there is, in fact, no guarantee that the different
contributors based their interpretations on the same (combination of)
data sources. Nonetheless, results demonstrate the high suitability of
high-resolution satellite imagery for the validation of binary thematic
maps, and the interest of using different sources to reach an efficient
global result.

The different response designs (blocks of sub-pixels vs. blocks of
polygons) and the limited precision of the cropland proportion esti-
mates due to the number of sub-pixels (100/25= 4%) might have in-
troduced some inconsistencies in the comparison of the expert and the
crowd observations. Indeed, the polygon-based response design is
thought to be more precise than the pixel-based one because it is not
affected by the Modifiable Area Unit Problem (MAUP), i.e., polygons
delineate actual image objects whereas pixels do not. A simulation
experiment to evaluate the impact of using two different response de-
signs revealed high agreement between cropland proportions derived
with blocks of polygons or with a blocks of sub-pixels (adjusted R2 of
0.987; see Fig. S2) and that the corresponding omission and commis-
sion errors were relatively balanced. This seems to indicate that the
effect on the continuous assessment was limited and that class alloca-
tion differences likely cancelled each other out. A way to further reduce
these discrepancies is to increase the number of sub-pixels, which
would be especially relevant when validating continuous products.
Attention should be paid to keep the number of sub-pixels to label
sufficiently low in order not to reduce the participation of the crowd,
which would in turn impact the reliability of standard deviation esti-
mates. Nonetheless, blocks of sub-pixels represent an improvement to a
direct presence/absence of cropland at the pixel level directly, such as
implemented in previous crowdsourcing campaigns, e.g., See et al.
(2014). With 25 sub-pixels, the extra work for the crowd (compared to a
direct interpretation of the sampling unit) did not significantly impact
the participation.

4.2.2. Sources of error specific to each group
Photo-interpretation by a group of regional experts is often con-

sidered as the gold standard for large-scale validation. Indeed, local
knowledge leads to higher accuracy, irrespective of the photo-inter-
preters' surveying experience (de Leeuw et al., 2011; Strand et al.,
2002). We report a within-expert agreement (Lin's CCC=0.83 and
MAE=8%) higher than the agreement between experts and the crowd
(Lin's CCC=0.79 and MAE=12%), which tends to confirm that

different levels of expertise and regional knowledge of the landscapes
influence photo-interpretation. However, within-expert agreement was
a far cry from perfect. These results are congruent with those obtained
by Vancutsem et al. (2012), who reported different rates of between-
expert agreement as a function of the cropland proportion in the sam-
pling unit (83% and 45% agreement, respectively). Similarly, Powell
et al. (2004) concluded that five interpreters were required to agree
upon a specific class. This suggests that expert contributions should also
be quality controlled to guarantee their accuracy and reliability. This
could be achieved at no additional cost as conflation would help reduce
the experts' workload. Particular attention should be paid 1) to verify
that they have a thorough understanding of the phenomenon being
observed and knowledge of the geographic region that they interpret
(de Leeuw et al., 2011), 2) to ensure good working conditions (Van
Coillie et al., 2014), and 3) to provide verification mechanisms during
the labelling phase, as well as tools to manage fatigue and to avoid
declines in vigilance (Van Coillie et al., 2014). Some errors might also
be attributed to less than perfect segmentations. Analysis of the com-
ments left by the experts during the labelling process reveals that seg-
mentation issues were reported for <3% of the sampling units. <0.5%
corresponds to cropland proportions between 40% and 60%, a range
where labelling errors are more likely to impact class attribution. The
generic segmentation algorithm might have resulted in over-segmen-
tation in areas with very large field size and under-segmentation in
complex landscapes. On the one hand, under-segmentation increases
the workload (as image objects are represented by more than one
polygon) but should marginally affect the labelling accuracy. On the
other hand, over-segmentation is more likely to reduce the labelling
accuracy. The magnitude of its impacts is a function of the image object
sizes and is only relevant for cropland non-cropland cases (other land
cover classes do not affect the estimates of cropland proportion). Ex-
amples of these situations include “roads between fields in field seg-
ments” or “trees [included] in field parcels”. The link between a re-
portedly poor segmentation and a subsequent poor labelling is thus not
evident. In fact, experts remained confident in their labelling in 43% of
the reported cases and were “doubtful” in only 12%. As a final note,
results suggest that expert-based photo-interpretation suffers from an
error of 8% (Table 2). This propagation of error during map validation
could partially explain why the accuracy of global land cover maps
seems to level off at around 70%.

Crowdsourcing was expected to reach a lower accuracy than that of
the experts because it is open to all. For example, in a previous study by
Fritz et al. (2013), the accuracy of crowdsourced observations ranged
between 66% and 76%, and the agreement between volunteers reached
83%. In this study, however, the main contributors were engaged in
remote sensing or geospatial sciences, or were students in related fields
(Laso Bayas et al., 2017). Therefore some degree of expertise can be
assumed. In addition, the performance and accuracy of volunteers can
improve over time (See et al., 2013) as they are trained and feedback on
their contributions is provided. This was encouraged by providing
training material and encouraging the use of social media for difficult-
to-interpret sampling units. Furthermore, the aggregation of multiple
contributions per sampling unit (using the median) might have helped
filter out extreme and unlikely contributions. Similarly, it might also
have averaged out correct answers where most volunteers were mis-
taken. Advanced aggregation techniques should be explored to take the
reliability of volunteered interpretations into account, e.g., with latent
class modelling (Foody et al., 2013, 2018) or by exploiting the
knowledge of experts within the crowd (Mann and Helbing, 2017;
Prelec et al., 2017).

It is important to reiterate here that ground truth data collection is
also subject to error. For instance, it is estimated that the Land Use and
Cover Area frame Survey (LUCAS) –a survey totalling a cost of €12.5
million for the collection of 337,855 points of which 200 K to 250 K will
be in situ and the rest photo-interpreted– still suffers from 3% dis-
agreement (Gallego and Delincé, 2010). Nonetheless, if in situ
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observations were available at the location of the sampling, they could
have been used to better assess the absolute quality of the photo-in-
terpretation. In general, access to in situ data remains difficult in remote
areas, so that ground truth observations are rare, or inaccessible. In-
ternational programs such as the global strategy for improving agri-
cultural and rural statistics (FAO, 2017) will hopefully provide more
georeferenced in situ data in the future.

4.3. Achieving conflation

Results show that partial conflation of expert and crowd reference
data can be achieved. However conflation is only practically viable
when informed by a measure of the reliability of the crowd contribu-
tions such as the crowd standard deviation. Achieving informed con-
flation requires a reliable estimation of the selected reliability measure.
For the crowd standard deviation, this can be achieved by defining a
sufficiently high number of sub-pixels per sampling units and by en-
suring that each sampling unit is labelled by a large number of volun-
teers. With our data set, a conflation rate of 70% could be realised
without significant changes in the accuracy estimates. In practice, the
conflation rate should be defined according to the application re-
quirements.

Given the recent advances in image recognition and computer vi-
sion, e.g., with deep learning methods (Xing et al., 2018), future studies
could explore conflation of expert, crowd, and automated image la-
belling. Similar to the crowd standard deviation, class prediction
probabilities –representing the prediction confidence of the model–
could serve as a proxy to inform a conflation strategy.

4.4. Recommendations for hybrid data collection

Enhancing expert data sets with larger sets of crowdsourced con-
tributions as proposed in this paper raises several challenges, mostly
related to data quality and heterogeneity. Therefore, several interven-
tions, e.g., corrections and verifications (Fonte et al., 2015), must be
implemented to increase the degree of reliability of the two data col-
lection approaches while ensuring efficiency of the process and limiting
intervention costs. Based on our results and on the literature discussed
previously, a set of evidence-based guidelines can be formulated to
move towards seamless integration of expert and crowd observations:

1) An initialization set consisting of a small number of sampling units
should first be interpreted by experts to rank the volunteers and
reward them not only based on the quantity but also on the quality
of their contributions. A priori knowledge could inform the dis-
tribution of these sampling units in space so as to cover a wide range
of complexity. In the present study, 2000 control sampling units
were randomly selected and interpreted by a group of three trained
interpreters (Laso Bayas et al., 2017). Sampling units where dis-
agreement surpassed 12% (3 out of 25 sub-pixels) were discarded
for quality purposes.

2) The crowdsourcing campaign is run using a user-friendly data
collection tool designed to reduce task and interpretation com-
plexity as well as to allow swift data collection. Volunteers should be
trained to use the tool and are introduced to the legend.
Gamification of the data collection as well as incentives should be
considered to sustain their engagement (Fritz et al., 2017; Laso
Bayas et al., 2016). In our crowdsourcing campaign, we prepared a
tutorial video (https://bit.ly/2wCMUza), implemented a dynamic
leader board, and rewarded volunteers with Amazon vouchers or co-
authorship (Laso Bayas et al., 2017). Volunteers were also en-
couraged to share experiences and difficult locations with the wider
community on social media.

3) Once the objective of the crowdsourcing campaign is met, one can
strategically allocate experts to those sampling units where the
crowd lacks consensus. Such targeted verification of uncertain

crowd observations by experts should rely on a proxy variable for
crowdsourcing reliability such as the crowd standard deviation.
Experts should be provided training materials and clear guidelines
on how to use confidence labels. A similar mechanism is im-
plemented in the Virtual Interpretation of Earth Web-Interface Tool
where conflicts in the majority cover class are reviewed by expert-
level users whose input supersedes that from the users (Clark and
Aide, 2011). Our results suggest that about 1200 sampling units
(~30% of the sample) require expert verification. Additionally,
sampling units with intermediate proportions (25–75%) could also
be verified. It is likely that the additional workload is low because of
the correlation between the crowd standard deviation and inter-
mediate class proportions. For instance, only 11 additional sampling
units would need to be verified in our data set.

4) The strategic allocation of experts allows to collect multiple expert
observations per sampling unit contribution at no additional cost,
thereby building up confidence in their interpretations. This ver-
ification of expert observations by other experts would help
reach consensus (Powell et al., 2004) and ensures collection of re-
ference data with high accuracy standards. This review process
could occur for all sampling units or strategically. In the second
case, confidence labels or large divergences between the crowd and
the experts are criteria that ought to be considered in the selection
process. In this study, a conflation rate of 70% could safely be rea-
lised. Therefore the remaining 30% of sampling units could be in-
terpreted by two to three experts with an equivalent effort.

Conflation of crowdsourced and expert data under the umbrella of a
collaborative global land cover information service would enable effi-
cient collection and sharing of validation data, as well as further en-
hancing the value-added applications of land cover information (Chen
et al., 2017).

5. Conclusions

In this study, we investigated whether the conflation of expert and
crowd reference data collected via photo-interpretation to validate
global binary maps was practically viable. To that aim, expert and
crowd observations were collected at >4000 locations following a
stratified systematic sampling approach. The stratified systematic
sampling is based on a pattern of replicates that facilitates sample size
adjustments and the stratification defines areas that are a priori pro-
blematic, so that the sampling rate could be increased in error-prone
areas. The overall agreement between the experts and the crowd was
high but varied by stratum and according to landscape complexity.
Crowdsourcing appeared particularly cost-effective in areas that were
easy to interpret and allowed difficult or problematic sampling units to
be identified, i.e., as evidenced by a lack of consensus between volun-
teers. Results suggest that crowd contributions can be integrated with
validation data sets collected by experts but total conflation is not re-
commended. Partial conflation, however, maintains the accuracy
standard of the expert data when informed by an indicator of the re-
liability of the crowdsourced labels. The crowd standard deviation,
which indicates the level of consensus between volunteers for a specific
sampling unit, was shown to be a good indicator of reliability of the
crowd observations. We illustrated the proposed approach by validating
two global cropland maps derived from Globeland 30 and GFSAD, and
estimated that 70% of the expert data could be crowdsourced with little
to no effect on the accuracy estimates. As a result, the spared expert
effort can then be re-invested to strengthen the confidence of the expert
contributions that were not conflated. We conclude that experts and
crowd reference data collection should be integrated at the sampling
and data analytics levels. While the approach presented here focused on
binary assessment, the recommendations remain valid for multi-class
validation.
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