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Abstract 

Measurement techniques as they apply to agroclimate look beyond conventional 
instrumentation and methodologies, which are used to derive new data from direct 
observations of specific agrometeorological variables. They address the integration of 
the meteorological, hydrologic and biophysical variables critical for understanding the 
processes governing agricultural production and the agricultural interaction with the 
environment. Agroclimate measurement techniques also consider the temporal and 
spatial scales relevant to agriculture. 

Soil moisture is a key variable for crop productivity, crop management practices, flood 
and excess moisture risk, and can control greenhouse gas emissions from farming 
operations. Crop condition and drought monitoring practices have been used as early 
warning for production and food security issues. Greenhouse gas flux is a critical indi- 
cator of the degree to which agriculture is either a source or a sink for greenhouse gases. 
Within each of these areas are multiple state of the art operational or near-operational 
techniques for measurement of indices and elements that pertain to spatial and tempo- 
ral scales that are important for agriculture. 

In an era of rapidly increasing availability of data, there are opportunities to better describe 
and measure the complexities of interactions influencing agricultural productivity and 
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the agrienvironmental footprint. Measurement techniques are increasingly relying on 
sophisticated modeling and analysis techniques that integrate data from several sources 
to derive new information at the temporal and spatial scales required to support the agri- 
culture sector’s needs for science-based early warning and decision support. 

Measurement of agrometeorological variables has been comprehensively covered 
(Hatfield and Baker, 2005; World Meteorological Organization, 2008; Petropoulos, 
2014). These books cover standard operational procedures and equipment, siting 
and data recording. Agroclimatology focuses on the interaction of atmospheric, 
soil and biological factors that influence production of agricultural commodi-   
ties and the environmental footprint associated with agricultural production. 
Measurement techniques for agroclimate must consider the integration of those 
meteorological, hydrologic and biophysical variables that are critical for agricul- 
tural production and the agricultural interaction with the environment, and do  
so at temporal and spatial scales relevant to agriculture. 

The purpose of this chapter is to identify key state of the art operational or 
near-operational techniques and discuss them at scales that are relevant to agricul- 
tural production. The chapter focuses on three main types of techniques that are 
critical for determination of agricultural productivity and the agri-environmental 
footprint. Soil moisture is a key variable for crop productivity, crop management 
practices, flood and excess moisture risk, and is a controlling factor in greenhouse 
gas emissions from farming operations. Crop condition and drought monitoring 
techniques have been used as early warning for production and food security 
issues. Greenhouse gas flux is a critical indicator of the degree to which agriculture 
is either a source or a sink for greenhouse gases. This has implications for the sus- 
tainability of agriculture. Discussion is supported with case studies that apply the 
concepts and techniques toward measurement of each of these elements. 

Soil Moisture 
Soil moisture is a critical variable for several agrienvironmental and agricultural pro- 
ductivity factors. Stored moisture in the soil is a direct supply of water to the crop, and 
supplements growing season precipitation. It impacts latent heat fluxes that control 
the crop microclimate. It controls several biochemical processes related to pests, dis- 
ease, rootzone oxygen exchange and fertility and is a controlling factor in runoff and 
groundwater recharge. In drier areas, where potential evapotranspiration exceeds 
precipitation, knowledge of spring soil moisture is a key element in determining sev- 
eral management practices, such as rates of fertilizer application, crop seeding rate 
and in some cases, crop selection. It is a key factor in assessment of drought risk and 
for establishing boundary conditions in weather forecast modeling. 

Soil moisture is highly dependent on soil properties, landscape conditions, 
precipitation variability, land cover and freeze-thaw conditions. Consequently, 
soil moisture is highly spatially variable in most agricultural fields and cost effec- 
tive means for determining soil moisture at field scales and depths relevant to 
agriculture remains a challenge. 

This section covers soil moisture measurement techniques that are available 
over a range of scales. Typically in situ measurements offer the greatest spatial 
precision as they can be taken from direct contact with the soil and sampling or 
instrumentation can be placed at specified depths. However the main limitation 
of in situ measurement is that the pixel size for a measurement is typically a vol- 
ume of a few cubic centimeters and therefore they are difficult to extrapolate to 
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field scale without extensive replication and cost. A limited number of intermedi- 
ate scale surface observation techniques are available that offer the potential to 
assist in scaling up to field scale. Data from remote sensing techniques are rela- 
tively inexpensive and available at time intervals suitable for monitoring, but are 
available at scales coarse enough that a pixel represents several square kilometers. 

In Situ Measurements 
A wide variety of nondestructive or minimally destructive techniques have been 
developed over the past forty years that can be considered for use. Most are well- 

adapted to multiple measurements and/or monitoring of soil moisture at one location 
over a period of several seasons. All come with a variety of strengths and limitations. 

Recent comprehensive reviews of soil moisture measurement techniques (Robin- 
son et al., 2008; Dobriyal et al., 2012; Romano, 2014) show that there is no preferred 

method for determination of in situ soil moisture and that sensor technology is con- 
tinually developing. A summary of some common techniques is presented in Table 1. 

Electromagnetic techniques offer the most promising means of measurement 
of soil moisture because this category contains a range of techniques that mea- 
sure the same soil water content proxy,  the bulk soil dielectric permittivity (E),    
at scales ranging from localized in situ sensors, to intermediate (field) scale and 
remote sensing techniques (Huisman et al., 2003). In situ sensors in this cate-  
gory are typically well-suited to wireless observation networks where automated 
observations can be taken at temporal resolutions as fine as is required (e.g., from 
one measurement every several hours to measurements at subminute frequen- 
cies) for almost any application. 

As the dielectric permittivity of water in the liquid phase (E ~ 80) is consid- 
erably larger than that of the soil matrix (E ~ 4 to 5) and air (E ~ 1), soil moisture 
has a dominant influence on soil dielectric permittivity. The soil permittivity        
is strongly determined by the content of water in the liquid phase in the soil. 
Because the dielectric permittivity of water in the frozen state drops to values 
comparable to the soil matrix, freezing and thawing of soil water can be deter- 
mined by the appearance of a sudden “drying” of the soil when frozen and a 
sudden spike in the apparent water content during thawing. 

The relationship between dielectric permittivity and soil is complex. When 
subjected to an alternating electrical  field,  preferred  molecular  alignment  of 
the water molecules in the soil to that field requires the application of sufficient 
energy to overcome the random movement from thermal motion. The alignment 
process stores electrical energy, which becomes evident as dielectric permittivity. 
Dielectric permittivity is composed of two parts: (i) the real permittivity, or that 
stored energy that overcomes the random movement of the molecules, and (ii) 
the imaginary permittivity, or the influence of the ionic makeup of the soil solu- 
tion that acts to acts to dissipate the stored energy. The imaginary permittivity is 
referred to as dielectric loss (Robinson et al., 2003). 

Dielectric loss can be attributed to two main processes: (i) electrical con- 
duction and (ii) molecular relaxation (Robinson et al., 2003). Soil properties that 
enhance electrical conduction include salinity and exchangeable cations, whereas 
properties that influence molecular relaxation of the soil water are often associ- 
ated with strong interactions between the soil surface and the solution (Seyfried 
et al., 2005). Dielectric loss can greatly complicate the calibration of sensors that 
use electromagnetic principles. A more detailed explanation of the relationship 
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Table 1. A summary of some common in-situ soil moisture measurement techniques. 
 

Method Mechanism Strengths Limitations 

 
Acoustic Wave 
Oscillation 
(Meisami-asl et al., 
2012) 

 
 
 

Capacitance Sensors 
(Bogena et al., 2007; 
Dean et al., 1987) 

 
 
 

Electrical Conductivity 
(EC) Sensors 
(Stenitzer, 1993) 

 

 
Frequency Domain 
Reflectrometry 
(Robock et al., 2000) 

 
 
 

Gravimetric 
measurement 
(Gardner, 1965) 

 

 
Ground Penetrating 
Radar 
(Huisman et al., 2002, 
2003; Tran et al., 
2015) 

 

 
Neutron Moisture 
Meter 
(Chanasyk and Naeth, 
1996) 

 

 
Tensiometers 
(Schmugge 
et al., 1980) 

 

 
Thermal Dispersion 
(Matile et al., 2013) 

 
 
 

Time Domain 
Reflectrometry 
(Topp et al., 1980) 

Some properties of 
sound waves, including 
sweep frequencies (10 
to 300MHz) and multiple 
tone sound have been 
correlated to soil moisture. 

Bulk permittivity of the 
soil is measured by 
an oscillating current. 
The magnitude of the 
resonant frequency is a 
function of soil moisture 
content. 

EC of the soil solution is 
calibrated to soil moisture. 
Porous median such as 
gypsum blocks are placed 
in contact with the soil. 

Bulk permittivity 
measured by reflected 
electromagnetic pulse 
reaching a set voltage 
(operate at 0.10 to 0.25 
GHz) 

A soil sample is removed 
from the ground weighed 
in the moist state and 
then dried at 105°C to a 
constant weight. 

 

Bulk permittivity of 
the soil is measured 
using high frequency 
electromagnetic waves. 

 
Release a pulse of fast 
neutrons and count slow 
(thermalized) returned 
neutrons that become 
thermalized when in 
contact with hydrogen 
atoms 

Measure soil water 
tension through negative 
pressure on water filled 
tube. 

Release a pulse of 
heat and measure 
change in temperature 
in surrounding soil, with 
heat transmission closely 
related moisture 

Bulk permittivity of the 
soil is measured by time 
for EM pulse (frequency 
> 0.5 GHz) to travel 
along buried waveguide 

 

Less influence from 
soil properties and the 
potential for sampling 
larger volumes of soil 
that most sensors. 

 
Several types available. 
Geometry of sensors is 
adaptable for boreholes. 
Some are low cost; 
most require low 
maintenance. 

 

Suitable for continuous 
monitoring. Soil matric 
potential measured. 

 

 
Similar to Time Domain 
Reflectometry but with 
lower frequency and 
faster response time 

 
Long history of 
use. It enables the 
determination of soil 
properties within 
the landscape when 
sampling for moisture. 

Suitable for use at 
field scales by moving 
the equipment across 
the soil using a sled 
or ATV taking multiple 
measurements. 

Reliable  technology 
with a long history of 
use. Suitable for deep 
boreholes for monitoring 
deep rooted crops (e.g. 
alfalfa) 

 

Direct measurement of 
soil matric potential 

 
 

Alternative to 
electromagnetic 
methods 

 

Nondestructive 
and accurate. Less 
susceptible to 
interference by bulk 
electrical conductivity 

 

 
Still in an experimental 
stage. 

 
 

Specific calibration of 
the soil is required. 
Susceptible to 
interference by bulk 
electrical conductivity 
and temperature. 

Does not measure 
volumetric soil 
moisture. Effective only 
in the wetter ranges of 
soil moisture. 

Influence of clay 
dispersion on permittivity 
therefore unique soil 
calibration required. 
Well suited to remote 
automated data collection. 

The soil is disturbed. It is 
labor intensive and not well 
suited to monitoring. The 
soil bulk density is required 
to establish volumetric 
moisture content. 

Signals are complex 
to interpret, and 
complicated by surface 
roughness, salinity 
and variations in soil 
stratigraphy. 

Requires use of 
radioactive materials 
that are restricted and 
require licensing, Not 
well-suited to automated 
data collection. 

Volumetric soil moisture 
not measured, useful 
only in the wetter 
ranges of soil moisture. 

 

Sensitive to significant 
fraction of organic 
matter or coarse gravel 

 

 
Soils with high cation 
exchange capacity and 
organic soils require 
specific calibration. 
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between soil properties, frequency and dielectric permittivity can be found in 
Robinson et al. (2003), Seyfried et al. (2005) and Chen and Or (2006). 

Sensors using dielectric properties to estimate soil moisture content in situ are 
typically in the form of probes that can be installed directly into the soil. They have 
been generally referred to as impedance probes (Cosh, 2005; Ojo et al., 2015). These 
probes measure the response of electromagnetic waves propagated along a coaxial 
cable to the bulk soil dielectric permittivity. Each probe has a set of parallel rods 
that are inserted in an undisturbed soil. The soil water acts as a resistance (imped- 
ance) that reflects the wave or a portion of it back to the source. These systems of 
measurement are nondestructive, suited to automated measurement and data col- 
lection, and accurate to within ± 1% when the soil water is in the liquid phase over 
the range of field moisture conditions; although, measurements during the frozen 
state are not accurate without a specific calibration for that purpose. 

There are two main methods of measuring the wave response. Time domain 
reflectometry (TDR) is based on  the  relationship  between  the  travel  time  of 
the wave and the length of the rods in the sensor (Topp et al., 1980). Frequency 
domain reflectometry (FDR) probes use variations in the frequency of the signal 
resulting from the soil permittivity to estimate soil moisture content (Dobriyal et 
al., 2012). The higher frequencies of the TDR reduce the sensitivity of the response 
to soils properties such as salinity, texture or temperature (Robinson et al., 2008). 
FDR probes operate at lower frequencies (e.g., 50 to 150 MHz compared to over 
1000 MHz for TDR probes) and are therefore more susceptible to influence from 
these soil properties. Some FDR probe models come with hardware and software 
to independently measure temperature and electrical conductivity, thus enabling 
them to more accurately determine the influence from soil properties and salinity, 
which comprise the dielectric loss or imaginary permittivity component. 

Frequency domain reflectometry–type probes are popular because of their 
lower cost, in terms of both capital investment and time. Their lower power con- 
sumption requirements coupled with the ability of the probes to be multiplexed 
with dataloggers make them attractive for remote monitoring. 

Impedance probes are the standard soil moisture sensor for the Canadian Real- 
time In situ Soil Monitoring for Agriculture (RISMA) network (Adams et al., 2015), 
and the United States national cooperative network, the United States Department 
of Agriculture Natural Resources Conservation Service (USDA-NRCS), and Soil 
Climate Analysis Network (SCAN) (Schafer et al., 2007). The publicly available 
data from these networks contain surface meteorological and soil moisture data at 
hourly resolution. Data from SCAN were correlated with (i) satellite-based active 
and passive microwave signatures in an agricultural landscape (Nghiem et al., 
2012), (ii) in validation of the Variable Infiltration Capacity (VIC), Decision Support 
System for Agrotechnology Transfer (DSSAT), and Climatic Water Budget (CWB) 
models (Meng and Quiring, 2008) and (iii) in validation of drought indicators 
derived from water storage data from the Gravity Recovery and Climate Experi- 
ment (GRACE) satellites (Houborg et al., 2012). As explained below in ”Drought 
Monitoring”, the GRACE-derived drought indicators were particularly useful as 
proxy for the sparse availability of ground-based observations of soil moisture and 
groundwater for drought monitoring (Houborg et al., 2012). 
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Intermediate Scale Measurements 
Cosmic Ray Techniques 

Determination of field soil moisture by the use of sensors to detect the 
intensity of passive neutrons generated by the interaction of cosmic rays with ter- 
restrial atoms has been discussed in Zreda et al. (2008). The ratio of high energy 
neutrons to low energy neutrons above the landscape surface is inversely cor- 
related with the number of hydrogen (H) atoms in the soil and therefore can be 
related to area averaged soil moisture content. The method is relatively insensi- 
tive to variations in soil chemical properties, although sensitivity to variations    
in organic matter within the soil or to vegetative growth on the landscape merits 
consideration. The cosmic ray probe is mounted above the soil surface and mea- 
sures the flux of high energy (fast) neutrons. 

The Cosmic ray Soil Moisture Observing System (COSMOS) is a continental- 
scale network consisting of instruments designed to improve the availability of 
continental-scale soil moisture measurements by ultimately deploying a network 
of 500 cosmic ray probes across the United States (Zreda et al., 2012). 

One potential source of uncertainty is the influence of the H content of bio- 
mass. The largest and most variable pool of H is from soil moisture. The H content 
of biomass is considered to be relatively constant however the contribution from 
variation in atmospheric humidity is significant enough that a correction factor is 
recommended (Zreda et al., 2012). Franz et al. (2013) was able to separate the con- 
tribution from soil moisture to estimate biomass water equivalent in a pine forest 
and in a maize field; however, they acknowledge that uncertainties arose from 
several factors including humidity and assumptions used in determining the for- 
est component of the landscape. A dry bias in cosmic ray derived near-surface 
soil moisture data in a mixed forest following snowmelt has also been observed 
(Lv et al., 2014). Snowcover over 6 cm deep or the presence of surface water can 
make determination of soil moisture impossible (Zreda et al., 2012). 

One significant feature of the cosmic ray method is that the sampling footprint 
at sea level can be 300 m in radius (Baatz et al., 2014). The sensitivity to thermalized 
neutrons attenuates with moisture content and depth, and the depth of measure- 
ment varies from 12 cm in wet soils to 70 cm in dry soils (Franz et al., 2013). 

The cosmic ray techniques offer an opportunity to measure a broader foot- 
print of soil moisture that is more representative of field scale, and therefore 
offers an intermediary scale between the point measurements of the previously 
mentioned techniques and the broader-scale remote sensing techniques. 

Remote Sensing Measurements 
Remote sensing measures the amount of radiation emitted, reflected and trans- 
mitted by a target. Sensors record this energy in one or more electromagnetic 
frequencies and through modeling the power of the detected energy can be 
related to a target parameter, such as soil moisture. The bulk soil permittivity (E) 
can be detected by sensors when the land surface is subjected to applied electro- 
magnetic fields at microwave frequencies (wavelengths of 1 to100 cm). Soils with 
higher moisture have greater reflectivity, as the power of the energy reflected 
(and by reciprocity emitted) is related to the dielectric permittivity through the 
Fresnel equations (Ulaby et al., 1986). 
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For time-sensitive applications, microwave sensors have a distinct advantage 
over optical sensors operating at shorter visible-infrared wavelengths. At longer 
microwave wavelengths atmospheric contributions to emission and scattering are 
minimal, enabling the collection of data even in the presence of clouds and haze. 

Microwave remote sensing can be applied either passively or actively, both with 
advantages and disadvantages. Tables 2 and 3 present passive and active satellites 
suitable for estimating soil moisture. Whether passive or active approaches are used, 
these sensors measure moisture in only the near surface volume (top few centime- 
ters). The depth of sensing (penetration depth) is not set, but is dependent primarily 
on the frequency and incident angle of the sensor, and on the soil wetness. This 

 

Table 2. Specifications of Selected Space-borne Passive Radiometers. 

 
Advanced 

 
 

Soil 

Special Senor 
Microwave/ 

Imager (SSM/I) 

Soil Moisture and 
Ocean Salinity 

(SMOS) 

Microwave Scanning 
Radiometer 2 

(AMSR-2) 

Moisture 
Active 

Passive 
(SMAP) 

 

Country United States 
European Space 
Agency 

Japan 
United 
States 

Launch Date 1987 2009 2012 2015 

Frequencies 
(GHz) 

Approximate Ground 
Resolution (km) 

19.3, 22.2, 37.0, 
and 85.5 

37 by 28 (37 
GHz) 
15 by 13 (85.5 
GHz) 

1.4 
6.9, 7.3, 10.6, 18.7, 
23.8, 36.5, 89.0 

 

35 to 50 
62 by 35 (6.9 GHz) 
5 by 3 (89.0 GHz) 

 
1.4 

 

 
40 

Swath (km) 1400 1000 1450 1000 

Table 3. Specifications of Selected Space-borne Synthetic Aperture Radars. 

TerraSAR-X RADARSAT-2 

Radar 
Imaging 
Satellite 
(RiSAT) 

Advanced Land 
Observing 
Satellite 2 
(ALOS-2) 
PALSAR 

Sentinel-1 

 
 
 
 
 
 
 

(wavelength-cm) 

(GHz) 

 
 

 
Width (km) 

Cycle (days) 

 
Country Germany 

 
Canada 

 
India 

 
Japan 

European 
Space 

    Agency 

2007     

Launch Date 2010 
(TanDEM-X) 

2007 2012 2014 2014 

Band 
X (3.1) C (5.6) C (5.6) L (22.9) C (5.6) 

Frequency 
9.7

 
5.4 5.35 1.2 5.4 

Approximate 
Ground Resolution 1 to 16 
(m) 

 
3 to 100 

 
2 to 50 

 
1 to 100 

 
5 to 100 

Nominal Swath 
1 to 100

 
10 to 500 10 to 240 25 to 490 20 to 400 

Exact Repeat 
11

 
24 25 14 12 
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depth is a fraction of the incident wavelength and is estimated between one-tenth 

(modeled) to one-quarter (measured in the field) of a wavelength (Jackson, 2002). 

Measurement by Passive Microwave Techniques 
Passive radiometers detect microwave energy naturally emitted by the Earth. The 
magnitude of emitted energy at microwave frequencies is quite small and thus, 
radiometers must integrate over large footprints to record a strong enough sig- 
nal relative to background and system noise (Jensen, 2007). Hence space-based 
radiometers have very coarse resolutions, on the order of tens of kilometers. Pas- 
sive microwave satellites image very large swaths and thus provide soil moisture 
products at regional and national scales at relatively frequent temporal intervals 
(1–2 d at high latitudes and 3 d at the Equator) (Pacheco et al., 2015). 

Passive radiometers record responses as brightness temperature (TB). TB is a 

function of the emissivity (e) and physical temperature (T) of the soil (TB = eT). Soils 

with higher moisture content have lower emissivity and accordingly, lower TB. If 
present, vegetation attenuates soil emissions and contributes to its own microwave 
emissions, complicating soil moisture retrieval (Jackson, 2002). Attenuation is char- 
acterized by the optical depth (t) which is empirically related to the vegetation 
water content (VWC); t is vegetation-type specific (Elachi and van Zyl, 2006). Soil 
roughness also affects the TB. Roughness increases surface area and emissivity. In 

almost all cases, approaches to retrieve soil moisture from TB use an approxima- 

tion of the radiative transfer equation known as the tau-omega (t- w) model, where 
w is the single scattering albedo (Mladenova et al., 2014). In the absence of vegeta- 
tion, estimating emissivity is easily accomplished using radiometer-measured TB 

and a measure of temperature. When a canopy is present, t must be estimated 
from a measure of VWC  to adjust for attenuation effects. While TB  is provided   

by one radiometer polarization, measures of temperature, VWC and roughness 
are determined from ancillary sources (i.e., single channel approach where for 
example, VWC is estimated from the optically-derived Normalized Difference Veg- 
etation Index) or from a second polarization on the same radiometer (dual channel 
approach) (Mladenova et al.,  2014). Radiometers measure a large dynamic range 
in brightness temperature. At L-band (1.4 GHz) TB decreases by ~70 K from dry to 

saturated soils (Elachi and van Zyl, 2006). Considering this sensitivity, TB can be 

inverted to estimate soil moisture at accuracies of about 0.04 g cm-3 when vegetation 
present has a VWC less than 5 kg m-2 (Elachi and van Zyl, 2006). 

Measurement by Active Microwave Techniques 
In contrast, active microwave sensors (Synthetic Aperture Radars or SARs) gener- 
ate their own energy, propagating pulses of microwaves and detecting the power 
of the energy scattered backto the sensor. Spatial resolutions of SARs are much 
finer, on the order of meters, relative to passive sensors. However,  the width      
of swaths imaged by SARs is much smaller and therefore more overpasses are 
required to provide the same spatial coverage as passive sensors. With a smaller 
swath, a SAR satellite re-images a specific area less frequently. Constellations 
(such as the proposed RADARSAT Constellation) are needed to achieve an equiv- 
alent temporal frequency and spatial coverage as that of passive systems. 

Active sensors measure the power  of  energy  scattered  back  to  the  sen-  
sor (backscatter (so)) proportionate to the power propagated by the radar. This 
two-way transmission results in complex scattering and a more challenging soil 
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moisture retrieval. Backscatter is highly sensitive to the incident angle of the 
transmitted wave and polarization of the transmitted and received wave. The 
geometry (soil and vegetation) affects scattering behavior (single, double or mul- 
tiple scattering), while dielectric properties affect the scattering power (Dobson 
and Ulaby, 1998). Both higher soil moisture content and rougher soils lead to 
greater scattering. As such, retrieval approaches must model both dielectric and 
roughness contributions to so. The Integral Equation Model (IEM) is physically 
based and integrates the small perturbation, geometric and physical optics mod- 
els (Fung and Chen, 1992). The IEM is appropriate for a wide range of moisture 
and roughness conditions. Inversion of the model is complex and thus Look Up 
Table (LUT) approaches have been used, yielding soil moisture errors of about 
0.04 g cm-3 when two incident angles and polarizations are exploited  (Mer-  
zouki and McNairn, 2015). Semi-empirical models such as the Oh model and the 
Dubois model simplify the scattering problem, primarily by reducing roughness 
parameters (Oh et al., 1992; Dubois et al., 1995). Accuracies with these models, for 
non-vegetated soils, are reported in the range of 0.04 g cm-3 (Dubois model) and 
0.08 g cm-3 (Oh model) (Merzouki et al., 2011). Vegetation creates multiple two- 
way scattering, greatly complicating soil moisture retrieval. The semi-empirical 
Water Cloud Model (WCM) represents the backscatter power as the incoherent 
sum of contributions from vegetation (so

veg) and soil (so
soil) (Attema and Ulaby, 

1978). However using C-band data and the WCM, Jiao et al. (2011) found limited 
sensitivity to soil moisture under established canopies. L-band microwaves pen- 
etrate deeper into the canopy. The L-band Soil Moisture Active Passive (SMAP) 
satellite will estimate soil moisture under vegetation by inverting 3-dimen-  
sional crop specific LUTs of complex forward radar models. Prelaunch validation 
using L-band airborne data yielded retrieval accuracies from 0.037 to 0.086 g m-3 
depending on crop type (McNairn et al., 2015). 

 

Crop Condition and Drought Monitoring 

Crop condition monitoring refers to repeated measurement and reporting of the 
changing growth and development aspects of crops and pastures during the 
growing season. Regional and national scale crop monitoring and reporting are 
increasingly based on satellite based optical sensors such as the Moderate resolu- 
tion Imaging Spectroradiometer (MODIS). Optical sensors have an advantage over 
microwave sensors for crop condition applications by sensing those wavelengths 
reflected as a result of plant biophysical processes. However these wavelengths are 
obscured by cloud cover, limiting the time available for measurement. MODIS data 
at the 250-meter resolution is supported by weather data obtained from land-based 
climate stations or satellite platforms. A reporting time frame such as weekly or 
biweekly is chosen to assess growth and development elements. 

Apart from providing vital scientific data on plant growth and development, 
crop condition monitoring is driven by (i) the increasing societal awareness and 
the need to know the adverse impacts of the environment on the food production 
systems, (ii) information demand from producers, grain traders, and govern- 
ment policymakers as well the agricultural industry as a whole to assist their 
decision making, and (iii) concerns about the future global food insecurity and 
the attendant social problems. The proliferation of satellite based sensors with 
global coverage has made data suitable for crop condition assessment data widely 
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Table 4. Examples of crop condition monitoring activities and products. 
 

Country Agency Product More information 

 
 
 
 

Australia 

Australian Bureau of Agricultural 
and Resource Economics and 
Science (ABARES) 

Queensland Alliance for 
Agriculture and Food Innovation 
(QAAFI), and Department of 
Agriculture and Food of Western 
Australia (DAFWA) 

 
National commodity 
forecasts 

 

 
State and shire commodity 

Nikolova et al. (2012) 
forecasts 

 

 
Canada 

Statistics Canada 
Crop Condition Assessment 
Program (CCAP) 

Reichert and Caissy 

(2002) 

Agriculture and Agri-Food 
Canada 

Institute of Remote Sensing 

Canadian Crop Yield 
Forecaster 

Chipanshi et al. 
(2012) 

China and Digital Earth (RADI) at the 
Chinese Academy of Sciences 

China Crop Watch Wu et al. (2014) 

 
Monitoring Agriculture with 

Europe 
Joint Research Centre (JRC) Remote Sensing (MARS) Joint Research Centre 

 
 
 
 
 

 
 
 
 
 
 

Global 

U.S. Agency for International 
Development (USAID) 

United Nations Food and 
Agriculture Organization (FAO) 

Group on Earth Observation 
(GEO) 

GEO Joint Experiment on Crop 

Famine Early Warning 
Systems Network (FEWS) 

Global Information and Early 
Warning System (GIEWS) 

GEO Global Agricultural 
Monitoring (GEOGLAM) 

 
JECAM Annual Progress 

 
http://www.fews.net 

 
http://www.fao.org/ 
giews 

http://geoglam-crop- 
monitor.org/ 

Assessment and Monitoring 
(JECAM) 

Report 
http://www.jecam.org 

 
 

available at frequencies and resolutions suitable for crop monitoring, inexpensive 
and reliable. As a result, many countries have developed crop monitoring sys- 
tems from satellite-based data supported by ground-based data, or collectively 
Earth Observation (EO) data. Examples of such systems are presented in Table 4. 

Vegetation Indices 
Remotely-sensed data collection has the potential to provide quantitative infor- 
mation on the amount, condition, and type of vegetation, provided that the effects 
of physical and physiological processes on the spectral characteristics of canopies 
are fully understood. 

One of the greatest challenges in the remote sensing of agricultural systems 
has been the reliable estimation of biophysical variables (such as aboveground 
biomass, net primary productivity and yield) from satellite platforms. This is 
largely a consequence of the “mixed pixel” problem, where factors other than the 
presence and amount of green vegetation (e.g., senescent vegetation, soil, shadow) 

 of European Commission 

 
US Department of Agriculture 
National Agricultural Statistics 

Crop Yield Forecasting 
System 

 
Cropscape 

(2012) 

 

 
Han et al. (2012) 

United 
States 

Service (NASS) 

NASS in collaboration with the 

 
World Agricultural Supply 

 

 Joint Agricultural Weather Facility 
(JAWF) of USDA and NOAA 

and Demand Estimates 
Report (WASDE) 

USDA (2012) 

 

http://www.fews.net/
http://www.fao.org/giews
http://www.fao.org/giews
http://geoglam-crop-/
http://www.jecam.org/


Measurement Techniques 499 
 

combine to form composite spectra (Asner, 1998; Asner et al., 1998; Fourty et al., 
1996; Goel, 1988; Myeni et al., 1989; Ross, 1981). Spectral mixing often makes the 
discrimination of green vegetation difficult and has prompted the development  
of numerous spectral vegetation indices (VIs). VIs are dimensionless radiometric 
measures that combine two or more spectral bands to enhance the vegetative sig- 
nal, while simultaneously minimizing background effects. Vegetation indices are 
one of the most widely used remote sensing measurements, and thus, many exist. 
The most common VIs utilize red (R) green (G) blue (B), near-infrared (NIR) and/ 
or shortwave infrared (SWIR) canopy reflectance. The indices are described in 
Table 5. Although many indices are well correlated with various plant biophysi- 
cal parameters some, such as the Normalized Difference Vegetation Index, have 
received more attention than others. 

The Normalized Difference Vegetation Index (NDVI) can be calculated from 
the red and near infrared data acquired by several satellite systems (Table 5). The 
principle behind the NDVI is based on the relationship between the physiologi- 
cal properties of healthy vegetation and the type and amount of radiation it can 
absorb and reflect (Gitelson and Kaufman 1998). More specifically, plant chloro- 
phyll strongly absorbs solar radiation in the red portion of the electromagnetic 
spectrum, while plant spongy mesophyll strongly reflects solar radiation in the 
near-infrared region of the spectrum (Jackson and Ezra 1985; Tucker 1979; Tucker 
et al., 1991). As a result, vigorously growing healthy vegetation has low red-light 
reflectance and high near-infrared reflectance, and hence, high NDVI values. 

The NDVI produces output values in the range of -1.0 to 1.0. Increasing positive 
NDVI values indicate increasing amounts of green vegetation, while NDVI values 
near zero and decreasing negative values are characteristic of non-vegetated sur- 
faces such as barren surfaces (rock and soil) and water, snow, ice, and clouds (Jensen 
2007). It is important to note, however, that because the NDVI becomes less sensitive 
to plant chlorophyll at high chlorophyll contents, the NDVI approaches saturation 
asymptotically under moderate-to-high biomass conditions (Baret and Guyot 1991; 
Gitelson and Kaufman 1998; Huete et al., 2002; Myneni et al., 2002; Sellers 1985). As a 
result, although the NDVI has been shown to correlate well with many canopy bio- 
physical properties, including vegetation abundance (Hurcom and Harrison 1998; 
Purevdorj et al., 1998), aboveground biomass (Boutton et al., 1980; Davidson and Csil- 
lag 2001; Weiser et al., 1986), green leaf area (Asrar et al., 1986; Baret and Guyot 1991; 
Weiser et al., 1986), photosynthetically active radiation (PAR) (Asrar et al., 1986; Baret 
and Guyot 1991; Hatfield et al., 1984; Tucker et al., 1986; Weiser et al., 1986), and pro- 
ductivity (Box et al., 1989; Prince 1991; Running et al., 1989), it generally does so in a 
nonlinear fashion across low-to-high productivity gradients. 

The NDVI has emerged as one of the most robust tools for monitoring natu- 
ral vegetation and crop conditions. The most commonly-used products are n-day 
(e.g., 7 or 10 d) maximum-value NDVI (Max-NDVI) composites and their associated 
anomalies (the associated NDVI differences from “normal conditions”) (Cracknell 
2001). While the detailed methodologies for creating these datasets vary, maxi- 
mum-value compositing usually involves (i) examining each NDVI value pixel by 
pixel for each observation date during the n-day compositing period, (ii) deter- 
mining the maximum-value NDVI for each pixel during the n-day period, and (iii) 
creating a single-output image that contains only the maximum NDVI value for 
each pixel for the n-day period. Maximum-value NDVI compositing has become  
a popular resource management tool because it captures the dynamics of green 
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vegetation and minimizes problems common to single-date NDVI data, such as 
those associated with interference from cloud cover, atmospheric attenuation, sur- 
face directional reflectance, and view and illumination geometry (Holben, 1986). 

The Advanced Very High Resolution Radiometer (AVHRR) instruments that 
have been flown onboard 14 of NOAA’s Polar Orbiting Satellites since 1978 have 
been considered the longest-lived and most influential series of Earth-observing 
satellites ever launched (Hastings and Emery, 1992). Since some VIs that have been 
applied, including NDVI, are based on anomalies during the period of record    
for observations, the long data record of AVHRR data has been particularly use- 
ful. The AVHRR, originally designed for meteorological applications, senses in 
the visible, near-infrared, and thermal infrared portions of the electromagnetic 
spectrum at a spatial resolution of 1.1 km. However, because the AVHRR sensor 
was not originally designed for monitoring vegetation, it suffers from limitations 
regarding the design of its red and near infrared channels when formulating 
NDVI (Fensholt and Sandholt, 2005). Two particularly important limitations of  
the AVHRR are (i) the overlap of the near infrared channel (0.725 to 1.100µm) with 
a region of considerable atmospheric water vapor absorption (0.9 to 0.98 µm) that 
can introduce noise to the remotely sensed signal (Huete et al., 2002; Justice et al., 
1991); and (ii) the relatively “quick” saturation of the red channel, and hence VIs 
derived from it, over medium-to-dense vegetation (Gitelson and Kaufman, 1998; 
Huete, 1988; Jensen, 2007; Myneni et al., 1997). 

These limitations were directly addressed with the development of a new 
generation of EO platforms including the moderate resolution imaging spectrora- 
diometer (MODIS) launched onboard NASA’s Terra satellite in Dec. 1999. MODIS, 
which has been acquiring data in 36 narrow spectral bands since Feb. 2000, was 
designed to provide data for vegetation and land cover mapping applications. 
The MODIS sensor offers a number of improvements over the AVHRR for NDVI 
calculation (Fensholt and Sandholt, 2005; Huete et al., 2002; Trishchenko et al., 
2002). These include improved (i) spectral resolution, (ii) radiometric resolution, 
(iii) spatial resolution,  (iv)  geolocation  accuracy,  and  (v) on-board  radiomet- 
ric calibration for producing scaled reflectances (Jensen, 2007). The MODIS red 
and near-infrared channels were selected to avoid the spectral regions of water 
absorption that constitute a major limitation of the AVHRR (Justice et al., 1991; 
Vermote and Saleous, 2006). Furthermore, the unprecedented radiometric resolu- 
tion of MODIS-Terra makes its red and near-infrared channels more sensitive to 
small variations in chlorophyll content, thereby lessening how quickly its NDVI 
saturates over denser vegetation. As a result of these improvements, MODIS- 
Terra holds promise for environmental monitoring in general and the estimation 
of vegetation indices in particular (Fensholt and Sandholt, 2005). 

Yield Estimation and Forecasting 
Traditionally, regional or national crop yield estimates were made by field or 
farmer surveys conducted during or after the crop growing season (e.g., USDA, 
2012; Statistics Canada, 2012). The survey method was resource intensive and 
significant time lags in data processing meant that reliable estimates were not 
normally available until long after the growing season. For example, Statistics 
Canada conducted national crop yield surveys in July, September and November 
and the last (or the most reliable) yield estimates were released in early December 
while most crops were harvested 2 to 3 mo earlier. To reduce the costs associated 
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with surveys and to increase the lead time of the crop yield estimates, tremen- 
dous efforts have been made by several countries to incorporate EO-based VI 
methods for in season crop monitoring which provide the capability of produc- 
ing crop yield forecasts (e.g., Potgieter et al., 2006; de Wit and van Diepen, 2007; 
Semenov and Doblas-Reyes, 2007; Qian et al., 2009; Mkhabela et al., 2011; Bornn 
and Zidek, 2012; Chipanshi et al., 2012; Nikolova et al., 2012). 

In Canada the Integrated Canadian Crop Yield Forecaster (ICCYF), a statisti- 
cal yield forecasting tool integrates remote sensing and agroclimate data in near 
real time to forecast grain and oil seed crops with a lead time of 2 to 3 mo start- 
ing in July (Newlands et al., 2014; Chipanshi et al., 2015). The ICCYF was first 
calibrated using NDVI as derived from the AVHRR sensor at 1 km resolution, 
combined with the corresponding agroclimatic indices from ground-based cli- 
mate stations (e.g., water stress, accumulated precipitation and growing degree 
days) against regional crop yield as reported by Statistics Canada from 1987 to 
2012. The basic unit for comparison was the Crop Census Agricultural Regions 
(CARs), units of approximately 1000 km2. The calibrated model from each CAR 
uses the near real time NDVI and climatic indices from seeding to the prediction 
date as model inputs. Beyond the prediction date to the end of the season, the 
unobserved variables that are required to make a forecast are estimated from a 
statistical procedure called random forest (Liaw and Wiener, 2002).The use of the 
random forest scheme takes advantage of the posterior statistical distribution of 
the predictor variables which is generated from the Markov-chain Monte Carlo 
algorithm (Dowd, 2006). Since outlook projections of crop yields from EO data 
started in 2013, the ICCYF has consistently generated yield results that are not 
statistically different at the CAR level from the final observed yield numbers that 
are released in November by Statistics Canada. Due to the similarity between 
official numbers and ICCYF simulations and the gain in lead time by the ICCYF 
over the survey methods, there have been discussions to replace some of the sur- 
vey results with simulated values in the near future. 

The skill in yield predictions with the ICCYF is expected to improve further 
when crop specific masks are used to generate NDVI values in near real time. Cur- 
rently, a generalized agriculture crop mask is used for all crops. Changes to the ICCYF 
algorithms under extreme weather (when results are less reliable) are being tested. 

Drought Monitoring 
Measurement and monitoring of drought have  challenges  because  the  physi- 
cal factors such as precipitation variability do not always predict the impacts of 
drought; the onset and recession of drought is imprecise and the spatial and tem- 
poral variability of drought can be large. The common factor in drought is that 
droughts develop from a deficiency of precipitation that results in water short- 
ages for some activity or for some group (Wilhite and Glanz, 1985). 

Quantification of drought severity was originally based on meteorological 
and/or hydrological data. Several indices have been developed and have been 
reviewed for use in the United States (Heim 2002, Keyantash and Dracup 2002) 
and globally (Vicente-Serrano et al., 2012). Some of the most commonly used indi- 
ces include the (i) Palmer Drought Severity Index (Palmer, 1965) based on soil 
conditions and current and prior climatological conditions, (ii) the Surface Water 
Supply Index (Shafer and Dezman, 1982; Garen, 1993), based on non-exceedance 
probabilities of normalized data for snowpack, precipitation, streamflow and 
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reservoir storage, and (iii) the Standardized Precipitation Index (SPI) (McKee et 
al., 1993; World Meteorological Organization, 2012) based on the non-exceedance 
probabilities based on the normalized variance of regional precipitation over the 
period of record for a specified time period, such as monthly or yearly. The SPI 
does not include a temperature component and therefore ignores the contribu- 
tion of temperature variability in drought severity, which could be a limitation   
in areas where potential evapotranspiration (PE) exceeds precipitation (P). The 
Standardized Precipitation and Evaporative Index (Vicente-Serrano et al., 2010) 
was developed with the incorporation of a P–PE component where PE can be 
calculated from temperature using established PE models such as the Penman– 
Monteith or Thornthwaite models, depending on availability of input data. 

Recent increases in data handling and modeling techniques and the increas- 
ing availability of remote sensing data have resulted in development of indices that 
integrate meteorological and biophysical expressions in the landscape and allow 
satellite-based monitoring of drought conditions. The United States Drought Moni- 
tor (USDM) (Svoboda et al., 2002) uses a hybrid of meteorological and hydrological 
indices combined with remotely-sensed vegetation indices to provide a weekly 
national assessment of drought for the United States. It has been the model for 
other drought monitoring efforts such as the North American Drought Monitor 
(NADM) https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/. 

The Vegetation Drought Response Index (VegDRI) (Brown et al., 2008) inte- 
grates traditional climate-based drought index information, SPI and PDSI, with 
satellite-based Normalized Difference Vegetation Index (NDVI). The VegDRI 
therefore assesses the effects of drought on vegetation by observing the vegeta- 
tion conditions from satellite and the level of dryness from climate data. Brown  
et al. (2008) reported that more spatially-detailed drought information could be 
obtained using VegDRI than what was available with the USDM. 

Anderson et al. (2007) used remotely sensed land surface temperature from ther- 
mal infrared imagery from the GOES satellite to derive temporal anomalies in the 
ratio of actual evapotranspiration (ET) to PE, which were expressed as the Evapora- 
tive Stress Index (ESI). The ESI provides anomalies in the values of the ratio of ET to PE 
compared to historic data. Patterns of water stress can be determined at a spatial reso- 
lution of 5to 10 km over continental scales. The ESI compared favorably with drought 
conditions as determined by the USDM (Anderson et al., 2007) and it is currently used 
operationally. Its application to United  States  drought  conditions  can  be  observed 
at the National Oceanic and Atmospheric Administration’s National Integrated 
Drought Information System website https://www.drought.gov/drought/content/ 
products-current-drought-and-monitoring-remote-sensing/evaporative-stress-index. 

Rapid onset of drought or “flash drought” conditions were observed in the 
Central Plains of the United States during the summer of 2012 (NOAA Drought 
Task Force, 2013). The combination of below normal rainfall, above normal tem- 
peratures, sunshine and wind greatly increase PE rates resulting in rapid drying 
conditions (Otkin et al., 2013). The Rapid Change Index (RCI) (Otkin et al., 2014) 
was developed to assess the cumulative magnitude of weekly ESI changes, which 
were correlated to the onset of drought conditions as determined by the USDM. 
During the 2012 drought they provided sensitivity to drought onset a month 
before the USDM drought assessment rapidly deteriorated from no drought to 
extreme drought. Otkin et al. (2015) applied the RCI to changes in evapotrans- 
piration, precipitation and soil moisture to provide early warning of drought 

http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/
http://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/
https://www.drought.gov/drought/content/products-current-drought-and-monitoring-remote-sensing/evaporative-stress-index
https://www.drought.gov/drought/content/products-current-drought-and-monitoring-remote-sensing/evaporative-stress-index
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across the continental United States, they noted that while proving the concept 
that rapid decline in the three indices can be used to identify areas susceptible to 
drought onset and intensification, further validation is required before it can be 
used with confidence for operational purposes. 

Soil moisture and drought indicators have been generated from the NASA 
and GRACE satellites. These twin satellites are sensitive enough to detect small 
changes in the earth’s gravitational field caused by water redistribution at or 
beneath the earth’s surface. Total terrestrial water storage data from the GRACE 
system have a monthly temporal resolution, and a coarse (150, 000 km2) spatial 
resolution. To make the information useful for drought monitoring, the GRACE 
Data Assimilation System (Zaitchik et al., 2008) was used to integrate GRACE  
TWS data with meteorological observations from both ground observation sta- 
tions and satellite based sensors. This enabled the downscaling and stratification 
of the TWS data into basin scale surface soil moisture, rootzone soil moisture and 
groundwater storage for the continental United States as near real time drought 
indices and compared with the United States and North American drought moni- 
tors. The data substituted for the sparse availability of ground-based observations 
of soil moisture and groundwater. The groundwater data in particular contributed 
a longer-term component to the anomalies associated with drought (Houborg et al., 
2012). Operational weekly water storage data map products based on the hybrid- 
ized GRACE data are available at the National Drought Mitigation Centre website 
http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx. 

Case Study: Crop Condition Assessment in the Ukraine 
Crop condition assessment is an important component of agriculture resource 
monitoring. Globally available products on crop condition assessment provide an 
extremely important input to food security within, for example, the Global Agri- 
culture Monitoring (GLAM) initiative. In the Ukraine, such information allows 
for the identification of crop phenological indicators and could be used for pre- 
diction of both crop yield (Kogan et al., 2013) and crop production (Kussul et al., 
2013; Kussul et al., 2014). 

Leaf area index (LAI), fraction of absorbed photosynthetically active radi- 
ation (FAPAR) and fraction of vegetation cover (FCOVER) are indicators that 
characterize the crop state (Camacho et al., 2013). Coarse resolution images 
acquired by SPOT-VEGETATION, MODIS, and PROBA-V are used to provide 
regular and timely products on biophysical parameters at global scale. To pro- 
vide consistent and reliable information these products should be validated using 
ground measurements. Hence, the particular objectives of this case study are: (i) 
to validate global biophysical products with use of in situ data, and (ii) to assess 
the efficiency (in terms of prediction error minimization) of satellite based data 
when assimilated into winter wheat crop yield forecasting models. 

A study area in Onufriivka county of Kirovohrad region was selected for 
winter wheat forecasting. For the validation of the required biophysical param- 
eters, a JECAM (Joint Experiment of Crop Assessment and Monitoring) test site 
was chosen. All surveys on the JECAM test site were conducted on two scales: 
local subsite (Pshenichne test site) of 3 by 3 km and a medium scale (county-level) 
site of approximately 1000 km2 (Camacho et al., 2013). 

Three field campaigns in 2013 (14 to 17 May, 12 to 15 June and 14 to17 July) and 
two field campaigns in 2014 (12 June and 31 July) were conducted to characterize the 

http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx
http://drought.unl.edu/MonitoringTools/NASAGRACEDataAssimilation.aspx
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Fig. 1. Biophysical maps for maize, derived from Landsat-8, fraction of absorbed 
photosynthetically active radiation (FAPAR) as for 31 July, 2014 (left); Leaf Area Index 
(LAI) effective as for 31 July, 2014 (right). 

vegetation biophysical parameters at the Pshenichne test site. Digital Hemispheric 
Photographic (DHP) images were acquired with a NIKON D70 camera by staff stand- 
ing above the crop. Hemispherical photos allow the calculation of LAI and FCOVER 
by measuring gap fraction through an extreme wide-angle camera lens (i.e., 180°). 
The hemispherical images acquired during the field campaign are processed with 
the CAN-EYE software (http://www.avignon.inra.fr/can_eye) to derive LAI, FAPAR 
and FCOVER estimations. The in situ biophysical values are used for producing LAI, 
FCOVER and FAPAR maps from optical satellite images, and provide cross-valida- 
tion, and validation of global remote sensing products (Morissette et al., 2006). 

Satellite imagery acquired from Landsat-8 (at 30 m spatial resolution) was 
used to support ground observations and provide high-resolution biophysical 
maps. SPOT Vegetation products LAI and FAPAR (at 1 km resolution) used in this 
study for yield forecast model calibration were obtained from Copernicus Global 
Land Service (http://land.copernicus.eu). 

Ground observations follow the Validation of Land European Remote sens- 
ing Instruments (VALERI)  protocol in which the measurements are made for a  
set of elementary sampling units (ESUs) (Baret et al., 2005). The center of each 
ESU is georeferenced using a Global Positioning System device. A pseudoregular 
sampling grid is used within each ESU of approximately 20 by 20 m. The number 
of hemispherical photos per ESU ranges between 12 and 15. The number of ESUs 
varied from year to year depending on available resources. During the three 2013 
campaigns 30, 34, and 37 ESUs were sampled whereas during the two campaigns 
in 2014, 28 and 25 ESUs were sampled. 

The NDVI specific for winter wheat specific, with use of a dynamic crop 
mask (a mask developed every year) is used as the main variable to derive three 
biophysical values (LAI, FAPAR, FCOVER) from satellite images. Two types of 
models are considered to relate NDVI to each of the three biophysical parameters 
estimated from ground measurements: linear (Y = b0  + b1*NDVI) and  exponential 
(Y = b0 * exp(b1*NDVI)), where Y = either LAI, FAPAR or FCOVER and b0 and b1 are 
adjustable parameters of the regression model. The following metrics are used to 
assess efficiency of the models: (i) root mean square error (RMSE); (ii) cross-vali- 
dation RMSE with a leave-one-out method (RC); (iii) model’s adjusted coefficient 
of determination r2. Yield is estimated as a sum of the trend component and devi- 
ation from trend, caused by the current situation with vegetation development. 

http://www.avignon.inra.fr/can_eye)
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Deviation is estimated with a linear single-factor regression model (Kogan et al., 
2013; Kussul et al., 2014; Camacho et al., 2013). 

Relationships between satellite-derived NDVI values and ground mea- 
surements of biophysical parameters were developed using both linear and 
exponential models. The best results for winter wheat have been achieved with    
a single factor exponential model for LAI (up to r2 = 0.84) and linear single fac-  
tor models for FAPAR (up to r2 = 0.84). Samples of created biophysical maps are 
shown in Fig. 1. These maps are used for validation of global LAI and FAPAR 
products derived from Copernicus Global Land Service. 

Biophysical products (FAPAR and LAI) are more preferable to be used as 
predictors in crop yield forecasting regression models. Corresponding models 
possess much better statistical properties and are more reliable than the NDVI 
based model. The most accurate result in the study to date has been obtained for 
LAI values derived from SPOT-VGT (at 1 km resolution) on county scale averaged 
using the crop mask (with r2 = 0.86). 

Therefore, we have concluded that for the Ukraine, LAI and FAPAR are the best 
variables for developing accurate, reliable regression based models for winter wheat 
yield forecasting at the county level. Models calibrated with biophysical parameters 
are much more accurate than models calibrated with classical vegetation indices 
(NDVI) and global biophysical products agree sufficiently with in situ data to allow 
them to be used confidently for yield forecasting in an operational mode. 

Greenhouse Gas Flux 
The three main greenhouse gases (GHGs) emitted from agricultural sources are 
carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). The source of emis- 

sions (e.g., soil-based vs. animal-based) usually dictates the most appropriate 
measurement technique to quantify GHG emissions. Agricultural soils,  which 
are diffuse (nonpoint) sources, can either emit or absorb CO2 and CH4 depending 

on the management practices and the environmental conditions. They are also   
an important source of N2O because of the increased application of nitrogen (N) 

fertilizer and manure. Livestock and animal waste treatment systems are signifi- 
cant sources of both CH4 and N2O. We will briefly present examples of GHG flux 

measurements from agricultural sources. We will show how the combination of 
measurements and models is being used to improve our understanding of the 
interactions between management practices and GHG emissions. We will also 
show how the amount of GHG emissions associated with an agricultural product 
can help quantify the impact of a production system on the environment. 

Chamber Measurements 
Closed and open chambers are frequently used to quantify the impact of a change 
in management practices on GHG emissions from agricultural soils (Rochette et al., 
1992). They are inexpensive and easy to use. Their main limitation is that they pro- 
vide information on a very small area. Lessard et al. (1996; 1997) used dynamic closed 
chamber systems to quantify the influence of manure applications on N2O and CH4 

emissions over a growing season. Zou et al. (2005) used chambers over rice paddies 
to show that there are trade-offs between CH4 and N2O emissions for certain man- 
agement practices. For example, in contrast with continuous flooding, mid-season 
drainage caused a drop in CH4 emissions, while concurrently increasing N2O emis- 
sions. Rochette et al. (1992) showed that respiration from soil under barley was 25% 
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lower than from fallow (uncropped) soil and that the afternoon soil respiration aver- 

aged 22 and 17% more than morning on fallow and barley fields, respectively. 

Measurements from Point Sources 
Livestock operations emit a substantial amount of CH4 from enteric fermentation and 

manure management. An inverse dispersion technique in conjunction with open- 
path instruments is ideal for measuring GHG emissions from multiple sources with 
large spatial and temporal variability, as is common on typical livestock operations 
(Flesch et al., 2005; Laubach et al., 2013). It uses a backward in time particle dispersion 
model which requires line-averaged concentration measurements of the gas of inter- 
est downwind and upwind of the source as well as the wind statistics provided by a 
sonic anemometer. Gao et al. (2011) used such a system to measure the average hourly 
methane emissions from a dairy feedlot for the fall and winter seasons. They showed 
that it is important to consider the diurnal pattern to assess the mitigation potential of 
a mitigation strategy. In a study on dairy farms, VanderZaag et al. (2014) showed that 
in the fall when the manure storage tank was full, 60% of the whole farm emissions 
came from the manure storage. They also reported that whole farm CH4 emissions 
were 40% higher in the fall than in the spring. 

Tower and Aircraft-based Flux Measurements 
Tower and aircraft-based flux measurements provide useful information on GHG 
emissions at a wide range of scales (Pattey et al., 2006a). Ma et al. (2007) esti- 
mated the net carbon exchange, at a grassland site in California, from 2000 to 2006 
using the eddy covariance technique. The net annual exchange, which varied 
from -88 to 141 g C m-2 y-1, depended primarily on the amount of rain during the 
growing period. Wagner-Riddle et al. (2007) used the flux-gradient technique to 
quantify the N2O emissions associated with the spring thaw period. The flux-gra- 
dient technique is sometimes used rather than the eddy covariance technique for 
cases when there are no fast response sensors for the gas of interest. Over a 5 yr 
period in a corn–soybean–wheat rotation, they showed that N2O emissions dur- 

ing November to April comprised between 30% and 90% of the annual emissions, 
mostly due to the large N2O emissions during soil thawing. Pattey et al. (2006b) 

demonstrated the management and weather impact on N2O fluxes during the 

growing season. Periods after N fertilizer applications coincided with increased 
N2O fluxes. They also showed the considerable daytime variability of N2O emis- 

sions that peaked during the midmorning and decreased in the afternoon as the 
soil dried. Tower-based flux measurements of N2O have also been an excellent 
source of information for testing and improving biogeochemical models (Smith  
et al., 2002). Using the DNDC model, the climatology of N2O emissions in Canada 
during spring thaw was examined by Smith et al. (2004). They estimated on aver- 
age, over the seven soil groups, that the N2O emissions during spring thaw were 

about 30% of the annual emissions. This information is used in Canada’s national 
agricultural GHG inventory (Rochette et al., 2008) to scale annual emissions to 
account for the spring thaw period. Desjardins et al. (2010) used aircraft-based 
flux measurements to verify N2O emission estimates at the regional scale. By 

comparing these flux measurements to process-based model estimates they were 
able to verify the magnitude of indirect N2O emissions. 
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Process-based Models 
Regardless of the temporal and spatial scales covered using various flux mea- 
surement techniques, it is clear that it is impossible to measure continuously and 
compare all management options. Models are then essential to fill the gap left by 
direct flux measurements. They help improve our understanding of the interac- 
tions between management practices and environmental conditions for a wide 
range of GHG sources. They also allow us to separate the environmental impacts 
of human activities and year to year variability due to climate. Better information 
on the impact of management practices is essential to improve GHG emission 
inventory (VanderZaag et al., 2013). 

The importance of models, especially those at the farm scale are gaining prom- 
inence in tools such as HOLOS (Little et al., 2008), the “Cool Farm Tool” (Hillier et 

al., 2011) and ULICEES (Vergé et al., 2012). These tools are being used to provide 
information on the carbon footprint of agricultural products. Because of consumer 
demands for environmentally sustainable food production producers of agricul- 
tural products with a lower carbon footprint will likely have access to either a wider 
range of markets or may get a preferential treatment such as less tariffs or taxes. 

Case Study: The Carbon Footprint of Beef in Canada 
An on-farm model has been developed to estimate the carbon footprint of agricul- 

tural products (Vergé et al., 2012). This model was developed using GHG flux 
measurements obtained using the techniques described above. The cradle to farm 

gate carbon footprint associated with beef production in Canada was quantified 
using this model for each Census year from 1981 to 2006 (Desjardins et al., 2012). It 

was obtained by first calculating the carbon footprint of all crops in Canada (Dyer 
et al., 2010). Then based on the diets of cattle, we estimated the GHG emission per 
kg of live weight at the exit gate of the farm. We note a substantial decrease in the 

carbon footprint (CFb) of beef from 1981 to 2006 (Table 4.1). This is due to better 
breeds, better diets bigger carcass weight and improved soil management practices. 

Carbon footprint estimates are very dependent on what GHG emissions are 
included. If we include the impact of soil carbon change in the carbon footprint 

(CFbc) calculation, we obtain a slightly larger carbon footprint for the period 
between 1981 and 1991 and a reduction in the carbon footprint for the period 

between 1996 and 2006. This is because of improved soil conservation practices, 
such as reduced tillage and reduced summer fallowing. The carbon footprint of 

beef also changes if the GHG emissions from cattle from the dairy sector are also 
included. In this case, an extra 14.4% of the GHG emissions from the dairy sector 
need to be allocated to meat production (IDF-FIL, 2010). The carbon foot- print of 
all beef production in Canada including the beef from the dairy sector (CFbcd) is 

given in Table 6. This value is larger than the other estimates because originally all 
the GHG emissions from the dairy sector were associated with milk production. 

This is one example of the range of carbon footprint values that can 

be obtained depending what is included in the calculation. 
 

Looking Ahead 

Agroclimatology is an integration of meteorological, biophysical, and hydrological 
parameters over spatial and temporal scales that are relevant for understanding 
agricultural production. This chapter discussed measurement techniques which 
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Table 6. Cradle to farm gate carbon footprint associated with beef production in Can- 
ada (Updated from Desjardins et al., 2012). 

 

Year Carbon footprint 
Carbon footprint including 

soil carbon change 
Carbon footprint including 

dairy sector 
 

 

――――――――――――――kg CO2e per kg LW―――――――――――――――― 
 

1981 16.6 16.9 18.2 

1986 15.3 15.4 16.6 

1991 13.7 13.9 14.9 

1996 12.4 12.1 12.8 

2001 10.3 9.7 10.2 

2006 10.0 9.0 9.5 

utilize combinations of in situ instrumentation, remote sensing instrumentation, 
and modeling to solve the complex interactions associated with measurements   
of soil moisture, crop conditions, expressions of drought, and the flux associated 
with greenhouse gases in agricultural landscapes. 

The rapid expansion of satellite-based remote sensing technology is vastly 
increasing the availability of timely, inexpensive data with increasingly temporal 
and spatial finer resolutions. With the development and adoption of drone technol- 
ogy, low-level aerial observations will add even higher resolution to monitoring 
efforts. Scaling of data will become even more important as independent monitor- 
ing activities conducted within a field merge with more conventional coarser scale 
monitoring. Competitive advantages will be gained from the ability to process and 
interpret large data volumes with increasing timeliness for decision support. 

Crowd sourced data will add complexity as to how data quality is assessed, 
managed, processed, and interpreted. Measurement techniques in this era of “big 
data” have extended beyond sensors and methodologies which derive new data 
from observations of the natural system to techniques that can capture the value 
of existing data. The measurement techniques of the future will have increasing 
reliance on the analytical powers of modeling, land data assimilation systems, 
neural network systems, and other means of optimizing the information con- 
tained in data to develop indices that better describe and measure the complex 
interactions of agroclimatologic processes. 
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